next up previous contents
Next: About this document ... Up: LAPACK95 Users' Guide Previous: Bibliography   Contents


Index by Keyword

absolute error
Arguments | Arguments | Arguments | Arguments | Arguments | Arguments | Arguments | Arguments | Arguments
accuracy and stability
Accuracy and Stability
algorithms
Bunch-Kaufman
full storage
Purpose | Purpose | Symmetric Indefinite Linear Systems
packed storage
Purpose | Purpose | Symmetric Indefinite Linear Systems
Cholesky decomposition
Purpose | Symmetric/Hermitian Positive Definite Linear
band storage
Purpose | Purpose | Symmetric/Hermitian Positive Definite Linear
full storage
Purpose | Purpose | Symmetric/Hermitian Positive Definite Linear
packed storage
Purpose | Purpose | Symmetric/Hermitian Positive Definite Linear
tridiagonal
LA_PTSV | Purpose
divide and conquer
Computational Routines for the
generalized symmetric, band storage
Purpose
generalized symmetric, full storage
Purpose
generalized symmetric, packed storage
Purpose
least squares
Purpose
singular value problems
Purpose
symmetric tridiagonal
Purpose
symmetric, band storage
Purpose
symmetric, full storage
Purpose
symmetric, packed storage
Purpose
Gaussian elimination with row interchanges
band storage
Purpose | Purpose
dense storage
Purpose | Purpose
tridiagonal
Purpose | Purpose
inverse iteration
Computational Routines for the
LDL$^T$ decomposition
full storage
Purpose
LDL$^T$ decomposition
full storage
Purpose
LDL$^T$ decomposition
packed storage
Purpose
LDL$^T$ decomposition
packed storage
Purpose
Pal-Walker-Kahan
Computational Routines for the
QR
Arguments | Arguments
RRR
Purpose | Purpose
Schur decomposition
see Schur
UDU$^T$ decomposition
full storage
Purpose
UDU$^T$ decomposition
full storage
Purpose
UDU$^T$ decomposition
packed storage
Purpose
UDU$^T$ decomposition
packed storage
Purpose
ALLOCATABLE attribute
Design of the LAPACK95
ALLOCATE statement
Design of the LAPACK95
arguments
assumed-shape arrays
Array Arguments
description
Argument Descriptions
descriptions
Argument Descriptions
illegal value
Error Handling
optional
Design of the LAPACK95 | Optional Arguments
order of
Order of Arguments
rank
Design of the LAPACK95
arrays
allocatable
Design of the LAPACK95 | Example 1
assumed-shape
LAPACK95 | Design of the LAPACK95 | Design of the LAPACK95 | Array Arguments
empty
Design of the LAPACK95
passing subsections
Design of the LAPACK95
ATLAS
LAPACK and the BLAS | BLAS | Performance Tables
automatic allocation
Design of the LAPACK95
auxiliary
enquiry function ILAENV
Optimal Value of the
routines
Levels of Routines | How to call an
backward error
Example (from Program LA_GESVX_EXAMPLE) | Example (from Program LA_GBSVX_EXAMPLE) | Example (from Program LA_PPSVX_EXAMPLE) | Example (from Program LA_PTSVX_EXAMPLE) | General Linear Systems | General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems | Triangular Linear Systems | Triangular Linear Systems | Triangular Linear Systems
bounds
Linear Equations
backward transformation
Computational Routines for the | Computational Routines for the
balanced pair of matrices
Computational Routines for the
balancing
Purpose | Computational Routines for the
transformation
Purpose
band
form
see band storage
storage
Linear Equations
scheme
Example 1 | Example 1 | Example 1
Basic Linear Algebra Subprograms
see BLAS
bidiagonal
factor
Computational Routines for the
form
Computational Routines for the
matrices
Matrix Storage Schemes | Matrix Storage Schemes
BLAS
Preface | Performance Tables
library
BLAS
model implementation
BLAS
optimized
BLAS
vendor implementation
BLAS
block
algorithms
Preface | Optimal Value of the
size
Incorporating Machine Dependencies | Performance Tables
bug reports
Support
Bunch-Kaufman
see algorithms
call LAPACK95 routines
Example 1 | Example 2
CD-ROM
Availability of Software via
Cholesky
see algorithms, decomposition and factorization
column equilibration
Example (from Program LA_GBSVX_EXAMPLE)
commercial use
Commercial Use
complex
conjugate pairs
Nonsymmetric Eigenproblems (NEP) | Generalized Nonsymmetric Eigenproblems (GNEP)
Hermitian
Linear Equations
Schur factorization
Nonsymmetric Eigenproblems (NEP)
symmetric
Linear Equations
computation
failure
Error Handling
computational routines
Problems that LAPACK95 can | Problems that LAPACK95 can | Levels of Routines | Design of Interfaces for
condition number
Linear Equations | Purpose
eigenvalues
generalized nonsymmetric
Purpose | Purpose
nonsymmetric
Arguments
eigenvectors
generalized nonsymmetric
Purpose | Purpose
nonsymmetric
Arguments
right
Computational Routines for the
invariant subspace
nonsymmetric
Purpose
selected eigenvalues
nonsymmetric
Purpose
specified eigenvalues
Computational Routines for the
condition number of the system
complex general
band
Purpose
dense
Purpose | General Linear Systems
triangular band
Triangular Linear Systems
triangular matrix
Triangular Linear Systems
triangular packed
Triangular Linear Systems
tridiagonal
Purpose
complex Hermitian
band storage
Symmetric/Hermitian Positive Definite Linear
dense
Symmetric/Hermitian Positive Definite Linear
indefinite, full storage
Purpose | Symmetric Indefinite Linear Systems
indefinite, packed storage
Purpose | Symmetric Indefinite Linear Systems
packed storage
Symmetric/Hermitian Positive Definite Linear
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
positive definite, tridiagonal
Purpose
tridiagonal
Symmetric/Hermitian Positive Definite Linear
complex symmetric
indefinite, full storage
Purpose | Symmetric Indefinite Linear Systems
indefinite, packed storage
Purpose | Symmetric Indefinite Linear Systems
general band
General Linear Systems
real general
band
Purpose
dense
Purpose | General Linear Systems
triangular band
Triangular Linear Systems
triangular matrix
Triangular Linear Systems
triangular packed
Triangular Linear Systems
tridiagonal
Purpose
real symmetric
dense
Symmetric/Hermitian Positive Definite Linear
dense, band storage
Symmetric/Hermitian Positive Definite Linear
indefinite, full storage
Purpose | Symmetric Indefinite Linear Systems
indefinite, packed storage
Purpose | Symmetric Indefinite Linear Systems
packed storage
Symmetric/Hermitian Positive Definite Linear
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
positive definite, tridiagonal
Purpose
tridiagonal
Symmetric/Hermitian Positive Definite Linear
tridiagonal
General Linear Systems
constructing LAPACK routines
LAPACK and the BLAS
conventional storage
Matrix Storage Schemes
Cosine-Sine decomposition
Generalized Singular Value Decomposition
CPU_TIME
Performance Tables
CXML
Performance Tables
data types
Data Types and Precision
debugging
hints, installation
Installation Debugging Hints
release_notes
Installation Debugging Hints
decomposition
Cholesky
Symmetric/Hermitian Positive Definite Linear
band storage
Symmetric/Hermitian Positive Definite Linear
packed storage
Symmetric/Hermitian Positive Definite Linear
tridiagonal
Symmetric/Hermitian Positive Definite Linear
singular values
Purpose
deflating subspace
Generalized Nonsymmetric Eigenproblems (GNEP) | Generalized Nonsymmetric Eigenproblems (GNEP) | Arguments | Example (from Program LA_GGESX_EXAMPLE)
derived types
Design of the LAPACK95
diagonal
block
Computational Routines for the | Computational Routines for the
blocks
Nonsymmetric Eigenproblems (NEP) | Generalized Nonsymmetric Eigenproblems (GNEP) | Computational Routines for the
elements
Symmetric Eigenproblems (SEP) | Argument Descriptions
entries
Generalized Singular Value Decomposition
matrices
Symmetric Eigenproblems (SEP) | Singular Value Decomposition (SVD) | Generalized Symmetric Definite Eigenproblems | Generalized Singular Value Decomposition | Generalized Singular Value Decomposition
divide and conquer
Generalized Symmetric Definite Eigenproblems
driver
Symmetric Eigenproblems (SEP)
least squares
Linear Least Squares (LLS) | Linear Least Squares (LLS)
method
Computational Routines for the
SVD
Singular Value Decomposition (SVD)
DLAMCH
LA_LAMCH Interfaces
documentation, structure
Structure of the Documentation
driver routines
Problems that LAPACK95 can | Problems that LAPACK95 can | Levels of Routines | Driver Routines | Performance Tables
divide and conquer
Linear Least Squares (LLS) | Singular Value Decomposition (SVD) | Generalized Symmetric Definite Eigenproblems
expert
Linear Equations | Generalized Symmetric Definite Eigenproblems
generalized
least squares
Generalized Linear Least Squares
nonsymmetric eigenvalue problem
Generalized Nonsymmetric Eigenproblems (GNEP) | Generalized Nonsymmetric Eigenproblems (GNEP)
SVD
Generalized Singular Value Decomposition
symmetric definite eigenvalue problem
Generalized Symmetric Definite Eigenproblems
linear
equations
Linear Equations
least squares
Linear Least Squares (LLS)
nonsymmetric eigenvalue problem
Nonsymmetric Eigenproblems (NEP)
simple
Linear Equations | Generalized Symmetric Definite Eigenproblems
effective rank of matrix
Purpose
eigenvalue problem
Problems that LAPACK95 can
ill-conditioned
Generalized Nonsymmetric Eigenproblems (GNEP)
regular
Generalized Nonsymmetric Eigenproblems (GNEP)
singular
Generalized Nonsymmetric Eigenproblems (GNEP)
eigenvalues
Symmetric Eigenproblems (SEP) | Symmetric Eigenproblems (SEP)
all
generalized nonsymmetric
Purpose
generalized symmetric, band storage
Purpose
generalized symmetric, full storage
Purpose
generalized symmetric, packed storage
Purpose
nonsymmetric
Purpose | Purpose
symmetric tridiagonal
Purpose
symmetric, band storage
Purpose
symmetric, full storage
Purpose
symmetric, packed storage
Purpose
approximate
generalized symmetric, band storage
Arguments
generalized symmetric, full storage
Arguments | Arguments
symmetric tridiagonal
Arguments | Arguments
symmetric, band storage
Arguments
symmetric, full storage
Arguments | Arguments
symmetric, packed storage
Arguments
condition number
nonsymmetric
Purpose | Arguments
divide and conquer method
Computational Routines for the
generalized
Computational Routines for the
ordering of
Generalized Nonsymmetric Eigenproblems (GNEP)
nontrivial
Generalized Singular Value Decomposition
ordering of
Nonsymmetric Eigenproblems (NEP)
Pal-Walker-Kahan algorithm
Computational Routines for the
reciprocal condition numbers
Computational Routines for the
selected
complex Hermitian
Computational Routines for the
generalized nonsymmetric
Purpose | Purpose | Purpose
generalized symmetric, band storage
Purpose
generalized symmetric, full storage
Purpose
generalized symmetric, packed storage
Purpose
nonsymmetric
Purpose | Purpose
real symmetric
Computational Routines for the
symmetric tridiagonal
Purpose | Purpose
symmetric, band storage
Purpose
symmetric, full storage
Purpose | Purpose
symmetric, packed storage
Purpose
selected cluster
Computational Routines for the | Computational Routines for the
symmetric
positive definite tridiagonal matrix
Computational Routines for the
tridiagonal matrix
Computational Routines for the
trivial
Generalized Singular Value Decomposition
eigenvectors
Symmetric Eigenproblems (SEP)
all
generalized nonsymmetric
Purpose
generalized symmetric, band storage
Purpose
generalized symmetric, full storage
Purpose
generalized symmetric, packed storage
Purpose
nonsymmetric
Purpose | Purpose
symmetric tridiagonal
Purpose
symmetric, band storage
Purpose
symmetric, full storage
Purpose
symmetric, packed storage
Purpose
complex conjugate pairs
nonsymmetric
Arguments | Arguments
condition number
nonsymmetric
Purpose | Arguments
left
Nonsymmetric Eigenproblems (NEP) | Generalized Nonsymmetric Eigenproblems (GNEP) | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the
generalized
Computational Routines for the
nonsymmetric
Purpose | Purpose
NEP
Nonsymmetric Eigenproblems (NEP)
normalized
nonsymmetric
Purpose
orthogonal
generalized symmetric, band storage
Arguments
generalized symmetric, full storage
Arguments
generalized symmetric, packed storage
Arguments
reciprocal condition numbers
Computational Routines for the
right
Nonsymmetric Eigenproblems (NEP) | Generalized Nonsymmetric Eigenproblems (GNEP) | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the
generalized
Computational Routines for the
nonsymmetric
Purpose | Purpose
scaled
nonsymmetric
Purpose | Arguments | Purpose
selected
complex Hermitian
Computational Routines for the
generalized nonsymmetric
Purpose | Purpose | Purpose
generalized symmetric, band storage
Purpose
generalized symmetric, full storage
Purpose
generalized symmetric, packed storage
Purpose
nonsymmetric
Purpose | Purpose
real symmetric
Computational Routines for the
symmetric tridiagonal
Purpose | Purpose
symmetric, band storage
Purpose
symmetric, full storage
Purpose | Purpose
symmetric, packed storage
Purpose
usually the fastest algorithm
Purpose | Purpose
symmetric
positive definite tridiagonal matrix
Computational Routines for the
tridiagonal matrix
Computational Routines for the | Computational Routines for the
EISPACK
Preface
elementary reflectors
Computational Routines for the
elimination
see also factorization or decomposition in algorithms
equality-constrained least squares
Generalized Linear Least Squares
equilibration
Linear Equations | General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear
by column
Example (from Program LA_GBSVX_EXAMPLE)
complex general
band
Purpose
dense
Purpose
complex Hermitian
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
real general
band
Purpose
dense
Purpose
real symmetric
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
ERINFO
Error Handling | Error Handling | Error Handling | Error Handling
errata
see release_notes
error
bounds
General Linear Systems | General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems | Triangular Linear Systems | Triangular Linear Systems | Triangular Linear Systems
handling
Design of the LAPACK95 | Error Handling
routine
Error Handling
error bounds for linear systems
complex general
band
Purpose
dense
Purpose
tridiagonal
Purpose
complex Hermitian
indefinite, full storage
Purpose
indefinite, packed storage
Purpose
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
positive definite, tridiagonal
Purpose
complex symmetric
indefinite, full storage
Purpose
indefinite, packed storage
Purpose
real general
band
Purpose
dense
Purpose
tridiagonal
Purpose
real symmetric
indefinite, full storage
Purpose
indefinite, packed storage
Purpose
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
positive definite, tridiagonal
Purpose
ESSL
Performance Tables
Euclidean norm
Arguments | Purpose
EXAMPLES1 (directory)
LAPACK95
EXAMPLES2 (directory)
LAPACK95
expert driver
Symmetric Eigenproblems (SEP)
description
Structure of the Documentation
f77_lapack.mod
How to call an | How to call an
f95_lapack.mod
How to call an | How to call an
factorization
see also decomposition or elimination in algorithms
Cholesky
Arguments | Example 2 (from Program | Arguments | Example 1 (from Program | Example 2 (from Program | Arguments | Symmetric/Hermitian Positive Definite Linear
band storage
Symmetric/Hermitian Positive Definite Linear
packed storage
Symmetric/Hermitian Positive Definite Linear
tridiagonal
Symmetric/Hermitian Positive Definite Linear
complex Hermitian
indefinite matrix
Symmetric Indefinite Linear Systems
indefinite matrix, packed storage
Symmetric Indefinite Linear Systems
complex symmetric
indefinite matrix
Symmetric Indefinite Linear Systems
indefinite matrix, packed storage
Symmetric Indefinite Linear Systems
Gauss
Purpose
generalized $QR$
Purpose
generalized RQ
Purpose
LQ
Purpose | Computational Routines for Orthogonal
LU
Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | General Linear Systems | General Linear Systems | General Linear Systems
QL
Computational Routines for Orthogonal
QR
Purpose | Purpose | Arguments | Arguments | Computational Routines for Orthogonal
with column pivoting
Computational Routines for Orthogonal
real symmetric
indefinite matrix
Symmetric Indefinite Linear Systems
indefinite matrix, packed storage
Symmetric Indefinite Linear Systems
RQ
Computational Routines for Orthogonal
Schur
Purpose | Purpose | Purpose | Purpose | Purpose | Purpose
split Cholesky
Computational Routines for the
FAQ
LAPACK95
Fortran standard
Preface
Fortran 77
Preface | Performance Issues | Performance Issues
Fortran 95
Preface | LAPACK95 | Performance Issues | Performance Issues
wrappers
LAPACK95
forward error
Example (from Program LA_GESVX_EXAMPLE) | Example (from Program LA_GBSVX_EXAMPLE) | Example (from Program LA_PPSVX_EXAMPLE) | Example (from Program LA_PTSVX_EXAMPLE)
bounds
Linear Equations
Frequently Asked Questions
see FAQ
Gauss
see algorithms and factorization
Gauss-Markov
see GLM
General Gauss-Markov Linear Model Problem
see GLM
Generalized $RQ$ Factorization
see GRQ
Generalized $QR$ Factorization
see GQR
generalized eigenproblem
Computational Routines for the | Computational Routines for the
banded, reduction
Computational Routines for the
nonsymmetric
Generalized Nonsymmetric Eigenproblems (GNEP)
packed form
Computational Routines for the
generalized least squares
Generalized Linear Least Squares
Generalized Nonsymmetric Eigenvalue Problem
see GNEP
generalized Schur
decomposition
Generalized Nonsymmetric Eigenproblems (GNEP)
vectors
Generalized Nonsymmetric Eigenproblems (GNEP)
generalized singular value
Generalized Singular Value Decomposition | Example 1 (from Program
Generalized Singular Value Decomposition
see GSVD
special cases
Generalized Singular Value Decomposition
generalized Sylvester equation
Computational Routines for the
Generalized Symmetric Eigenvalue Problem
see GSEP
generalized upper Hessenberg form
Computational Routines for the
generic
interface blocks
F77_LAPACK Generic Interface Blocks
interfaces
LAPACK95 | Design of the LAPACK95
GLM
Generalized Linear Least Squares
problem
Purpose
GNEP
Generalized Nonsymmetric Eigenproblems (GNEP)
GQR
Generalized Linear Least Squares | Generalized Linear Least Squares
GRQ
Generalized Linear Least Squares | Generalized Linear Least Squares
GSEP
Generalized Symmetric Definite Eigenproblems
GSVD
Generalized Singular Value Decomposition | see Generalized Singular Value Decomposition | Computational Routines for the
Hermitian
Linear Equations
eigenvalue problem
Symmetric Eigenproblems (SEP)
matrices
Matrix Storage Schemes
Hessenberg
upper
Computational Routines for the | Computational Routines for the
generalized form
Computational Routines for the
ILAENV
Optimal Value of the | Optimal Value of the | Code for One Version
illegal argument
Optional Arguments
inconsistent shapes
Error Handling
indefinite symmetric
Linear Equations
Independent Software Vendor
see ISV
INFO
Error Handling
installation
Availability and Installation of
debugging hints
Installation Debugging Hints
insufficient memory
Error Handling
INTENT attribute
IN
Code for One Version
INOUT
Code for One Version
OUT
Code for One Version
INTERFACE statement
LA_SYEV/LA_HEEV | LA_SYEV/LA_HEEV | LA_GESV Multiple $\mathit{RHS}$ Case | LA_SYEV/LA_HEEV | LA_GESV
interfaces
generic
Design of the LAPACK95
invalid
argument
Error Handling
shape
Error Handling
invariant subspace
Nonsymmetric Eigenproblems (NEP) | Generalized Nonsymmetric Eigenproblems (GNEP) | Purpose | Purpose | Computational Routines for the
inverse of a matrix
General Linear Systems | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems | Triangular Linear Systems | Triangular Linear Systems
ISV
BLAS
iterative refinement of the system
complex general
band
Purpose
dense
Purpose
tridiagonal
Purpose
complex Hermitian
indefinite, full storage
Purpose
indefinite, packed storage
Purpose
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
positive definite, tridiagonal
Purpose
complex symmetric
indefinite, full storage
Purpose
indefinite, packed storage
Purpose
real general
band
Purpose
dense
Purpose
tridiagonal
Purpose
real symmetric
indefinite, full storage
Purpose
indefinite, packed storage
Purpose
positive definite, band storage
Purpose
positive definite, full storage
Purpose
positive definite, packed storage
Purpose
positive definite, tridiagonal
Purpose
KIND type parameter
Data Types and Precision
la_auxmod.mod
How to call an
LA_BDSDC
Computational Routines for the
LA_BDSQR
Computational Routines for the
LA_GBBRD
Computational Routines for the
LA_GBCON
General Linear Systems
LA_GBEQU
General Linear Systems
LA_GBRFS
General Linear Systems
LA_GBSV
Linear Equations | LA_GBSV
LA_GBSVX
Linear Equations | LA_GBSVX
LA_GBTRF
General Linear Systems
LA_GBTRS
General Linear Systems
LA_GEBAK
Computational Routines for the
LA_GEBAL
Computational Routines for the
LA_GEBRD
Computational Routines for the
LA_GECON
General Linear Systems
LA_GEEQU
General Linear Systems
LA_GEES
Nonsymmetric Eigenproblems (NEP) | Singular Value Decomposition (SVD) | LA_GEES
LA_GEESX
Nonsymmetric Eigenproblems (NEP) | Singular Value Decomposition (SVD) | LA_GEESX
LA_GEEV
Nonsymmetric Eigenproblems (NEP) | Singular Value Decomposition (SVD) | Performance Tables | Performance Tables | Performance Tables | Performance Tables | LA_GEEV
LA_GEEVX
Nonsymmetric Eigenproblems (NEP) | Singular Value Decomposition (SVD) | LA_GEEVX
LA_GEHRD
Computational Routines for the
LA_GELQF
Computational Routines for Orthogonal
LA_GELS
Linear Least Squares (LLS) | Linear Least Squares (LLS) | LA_GELS
LA_GELSD
Linear Least Squares (LLS) | Linear Least Squares (LLS) | Linear Least Squares (LLS) | LA_GELSS / LA_GELSD
LA_GELSS
Linear Least Squares (LLS) | Linear Least Squares (LLS) | Linear Least Squares (LLS) | LA_GELSS / LA_GELSD
LA_GELSY
Linear Least Squares (LLS) | Linear Least Squares (LLS) | Linear Least Squares (LLS) | LA_GELSY
LA_GEQLF
Computational Routines for Orthogonal
LA_GEQP3
Computational Routines for Orthogonal
LA_GEQRF
Example 2 | Computational Routines for Orthogonal
LA_GERFS
General Linear Systems
LA_GERQF
Computational Routines for Orthogonal
LA_GESDD
Singular Value Decomposition (SVD) | Singular Value Decomposition (SVD) | Performance Tables | Performance Tables | Performance Tables | Performance Tables | LA_GESVD / LA_GESDD
LA_GESV
Linear Equations | Array Arguments | Example 1 | Performance Tables | Performance Tables | Performance Tables | LA_GESV
LA_GESVD
Singular Value Decomposition (SVD) | Singular Value Decomposition (SVD) | Performance Tables | Performance Tables | Performance Tables | Performance Tables | LA_GESVD / LA_GESDD
LA_GESVX
Linear Equations | LA_GESVX
LA_GETRF
General Linear Systems
LA_GETRI
General Linear Systems
LA_GETRS
General Linear Systems
LA_GGBAK
Computational Routines for the
LA_GGBAL
Computational Routines for the
LA_GGES
Generalized Nonsymmetric Eigenproblems (GNEP) | Generalized Singular Value Decomposition | LA_GGES
LA_GGESX
Generalized Nonsymmetric Eigenproblems (GNEP) | Generalized Singular Value Decomposition | LA_GGESX
LA_GGEV
Generalized Nonsymmetric Eigenproblems (GNEP) | Generalized Singular Value Decomposition | LA_GGEV
LA_GGEVX
Generalized Nonsymmetric Eigenproblems (GNEP) | Generalized Singular Value Decomposition | LA_GGEVX
LA_GGGLM
Generalized Linear Least Squares | Generalized Linear Least Squares | LA_GGGLM
LA_GGHRD
Computational Routines for the
LA_GGLSE
Generalized Linear Least Squares | LA_GGLSE
LA_GGSVD
Generalized Singular Value Decomposition | Generalized Singular Value Decomposition | LA_GGSVD
LA_GGSVP
Computational Routines for the
LA_GTCON
General Linear Systems
LA_GTRFS
General Linear Systems
LA_GTSV
Linear Equations | LA_GTSV
LA_GTSVX
Linear Equations | LA_GTSVX
LA_GTTRF
General Linear Systems
LA_GTTRS
General Linear Systems
LA_HBEV
Singular Value Decomposition (SVD) | LA_SBEV / LA_HBEV /
LA_HBEVD
Singular Value Decomposition (SVD) | LA_SBEV / LA_HBEV /
LA_HBEVX
Singular Value Decomposition (SVD) | LA_SBEVX / LA_HBEVX
LA_HBGST
Computational Routines for the
LA_HBGV
Generalized Singular Value Decomposition | LA_SBGV / LA_SBGVD /
LA_HBGVD
Generalized Singular Value Decomposition | LA_SBGV / LA_SBGVD /
LA_HBGVX
Generalized Singular Value Decomposition | LA_SBGVX / LA_HBGVX
LA_HBTRD
Computational Routines for the
LA_HECON
Symmetric Indefinite Linear Systems
LA_HEEV
Singular Value Decomposition (SVD) | LA_SYEV / LA_HEEV /
LA_HEEVD
Singular Value Decomposition (SVD) | LA_SYEV / LA_HEEV /
LA_HEEVR
Singular Value Decomposition (SVD) | LA_SYEVR / LA_HEEVR
LA_HEEVX
Singular Value Decomposition (SVD) | LA_SYEVX / LA_HEEVX
LA_HEGST
Computational Routines for the
LA_HEGV
Generalized Singular Value Decomposition | LA_SYGV /LA_SYGVD / LA_HEGV
LA_HEGVD
Generalized Singular Value Decomposition | LA_SYGV /LA_SYGVD / LA_HEGV
LA_HEGVX
Generalized Singular Value Decomposition | LA_SYGVX / LA_HEGVX
LA_HERFS
Symmetric Indefinite Linear Systems
LA_HESV
Linear Equations | LA_SYSV / LA_HESV
LA_HESVX
Linear Equations | LA_SYSVX / LA_HESVX
LA_HETRD
Computational Routines for the
LA_HETRF
Symmetric Indefinite Linear Systems
LA_HETRI
Symmetric Indefinite Linear Systems
LA_HETRS
Symmetric Indefinite Linear Systems
LA_HGEQZ
Computational Routines for the
LA_HPCON
Symmetric Indefinite Linear Systems
LA_HPEV
Singular Value Decomposition (SVD) | LA_SPEV / LA_HPEV /
LA_HPEVD
Singular Value Decomposition (SVD) | LA_SPEV / LA_HPEV /
LA_HPEVX
Singular Value Decomposition (SVD) | LA_SPEVX / LA_HPEVX
LA_HPGST
Computational Routines for the
LA_HPGV
Generalized Singular Value Decomposition | LA_SPGV / LA_SPGVD /
LA_HPGVD
Generalized Singular Value Decomposition | LA_SPGV / LA_SPGVD /
LA_HPGVX
Generalized Singular Value Decomposition | LA_SPGVX / LA_HPGVX
LA_HPRFS
Symmetric Indefinite Linear Systems
LA_HPSV
Linear Equations | LA_SPSV / LA_HPSV
LA_HPSVX
Linear Equations | LA_SPSVX / LA_HPSVX
LA_HPTRD
Computational Routines for the
LA_HPTRF
Symmetric Indefinite Linear Systems
LA_HPTRI
Symmetric Indefinite Linear Systems
LA_HPTRS
Symmetric Indefinite Linear Systems
LA_HSEIN
Computational Routines for the
LA_HSEQR
Computational Routines for the
LA_LAMCH
Machine Dependent Constants (Function | LA_LAMCH Interfaces | Arguments | Arguments | Arguments | Arguments | Arguments | Arguments | Arguments | Arguments | Arguments
LA_OPGTR
Computational Routines for the
LA_OPMTR
Computational Routines for the
LA_ORGBR
Computational Routines for the
LA_ORGLQ
Computational Routines for Orthogonal
LA_ORGQL
Computational Routines for Orthogonal
LA_ORGQR
Computational Routines for Orthogonal
LA_ORGRQ
Computational Routines for Orthogonal
LA_ORGTR
Computational Routines for the
LA_ORMBR
Computational Routines for the
LA_ORMHR
Computational Routines for the
LA_ORMLQ
Computational Routines for Orthogonal
LA_ORMQL
Computational Routines for Orthogonal
LA_ORMQR
Computational Routines for Orthogonal
LA_ORMRQ
Computational Routines for Orthogonal
LA_ORMRZ
Computational Routines for Orthogonal
LA_ORMTR
Computational Routines for the
LA_PBCON
Symmetric/Hermitian Positive Definite Linear
LA_PBEQU
Symmetric/Hermitian Positive Definite Linear
LA_PBRFS
Symmetric/Hermitian Positive Definite Linear
LA_PBSTF
Computational Routines for the
LA_PBSV
Linear Equations | LA_PBSV
LA_PBSVX
Linear Equations | LA_PBSVX
LA_PBTRF
Symmetric/Hermitian Positive Definite Linear
LA_PBTRS
Symmetric/Hermitian Positive Definite Linear
LA_POCON
Symmetric/Hermitian Positive Definite Linear
LA_POEQU
Symmetric/Hermitian Positive Definite Linear
LA_PORFS
Symmetric/Hermitian Positive Definite Linear
LA_POSV
Linear Equations | Optional Arguments | LA_POSV
LA_POSVX
Linear Equations | LA_POSVX
LA_POTRF
Symmetric/Hermitian Positive Definite Linear
LA_POTRI
Symmetric/Hermitian Positive Definite Linear
LA_POTRS
Symmetric/Hermitian Positive Definite Linear
LA_PPCON
Symmetric/Hermitian Positive Definite Linear
LA_PPEQU
Symmetric/Hermitian Positive Definite Linear
LA_PPRFS
Symmetric/Hermitian Positive Definite Linear
LA_PPSV
Linear Equations | LA_PPSV
LA_PPSVX
Linear Equations | LA_PPSVX
LA_PPTRF
Symmetric/Hermitian Positive Definite Linear
LA_PPTRI
Symmetric/Hermitian Positive Definite Linear
LA_PPTRS
Symmetric/Hermitian Positive Definite Linear
la_precision.mod
Data Types and Precision | How to call an | How to call an | How to call an | Example 1 | Example 2
LA_PTCON
Symmetric/Hermitian Positive Definite Linear
LA_PTEQR
Computational Routines for the
LA_PTRFS
Symmetric/Hermitian Positive Definite Linear
LA_PTSV
Linear Equations | LA_PTSV
LA_PTSVX
Linear Equations | LA_PTSVX
LA_PTTRF
Symmetric/Hermitian Positive Definite Linear
LA_PTTRS
Symmetric/Hermitian Positive Definite Linear
LA_SBEV
Singular Value Decomposition (SVD) | LA_SBEV / LA_HBEV /
LA_SBEVD
Singular Value Decomposition (SVD) | LA_SBEV / LA_HBEV /
LA_SBEVX
Singular Value Decomposition (SVD) | LA_SBEVX / LA_HBEVX
LA_SBGST
Computational Routines for the
LA_SBGV
Generalized Singular Value Decomposition | LA_SBGV / LA_SBGVD /
LA_SBGVD
Generalized Singular Value Decomposition | LA_SBGV / LA_SBGVD /
LA_SBGVX
Generalized Singular Value Decomposition | LA_SBGVX / LA_HBGVX
LA_SBTRD
Computational Routines for the
LA_SPCON
Symmetric Indefinite Linear Systems
LA_SPEV
Singular Value Decomposition (SVD) | LA_SPEV / LA_HPEV /
LA_SPEVD
Singular Value Decomposition (SVD) | LA_SPEV / LA_HPEV /
LA_SPEVX
Singular Value Decomposition (SVD) | LA_SPEVX / LA_HPEVX
LA_SPGST
Computational Routines for the
LA_SPGV
Generalized Singular Value Decomposition | LA_SPGV / LA_SPGVD /
LA_SPGVD
Generalized Singular Value Decomposition | LA_SPGV / LA_SPGVD /
LA_SPGVX
Generalized Singular Value Decomposition | LA_SPGVX / LA_HPGVX
LA_SPRFS
Symmetric Indefinite Linear Systems
LA_SPSV
Linear Equations | LA_SPSV / LA_HPSV
LA_SPSVX
Linear Equations | LA_SPSVX / LA_HPSVX
LA_SPTRD
Computational Routines for the
LA_SPTRF
Symmetric Indefinite Linear Systems
LA_SPTRI
Symmetric Indefinite Linear Systems
LA_SPTRS
Symmetric Indefinite Linear Systems
LA_STEBZ
Computational Routines for the
LA_STEDC
Computational Routines for the
LA_STEGR
Computational Routines for the
LA_STEIN
Computational Routines for the
LA_STEQR
Computational Routines for the
LA_STERF
Computational Routines for the
LA_STEV
Singular Value Decomposition (SVD) | LA_STEV / LA_STEVD
LA_STEVD
Singular Value Decomposition (SVD) | LA_STEV / LA_STEVD
LA_STEVR
Singular Value Decomposition (SVD) | LA_STEVR
LA_STEVX
Singular Value Decomposition (SVD) | LA_STEVX
LA_SYCON
Symmetric Indefinite Linear Systems
LA_SYEV
Singular Value Decomposition (SVD) | Code for One Version | LA_SYEV / LA_HEEV /
LA_SYEVD
Singular Value Decomposition (SVD) | LA_SYEV / LA_HEEV /
LA_SYEVR
Singular Value Decomposition (SVD) | LA_SYEVR / LA_HEEVR
LA_SYEVX
Singular Value Decomposition (SVD) | LA_SYEVX / LA_HEEVX
LA_SYGST
Computational Routines for the
LA_SYGV
Generalized Singular Value Decomposition | LA_SYGV /LA_SYGVD / LA_HEGV
LA_SYGVD
Generalized Singular Value Decomposition | LA_SYGV /LA_SYGVD / LA_HEGV
LA_SYGVX
Generalized Singular Value Decomposition | LA_SYGVX / LA_HEGVX
LA_SYRFS
Symmetric Indefinite Linear Systems
LA_SYSV
Linear Equations | LA_SYSV / LA_HESV
LA_SYSVX
Linear Equations | LA_SYSVX / LA_HESVX
LA_SYTRD
Computational Routines for the
LA_SYTRF
Symmetric Indefinite Linear Systems
LA_SYTRI
Symmetric Indefinite Linear Systems
LA_SYTRS
Symmetric Indefinite Linear Systems
LA_TBCON
Triangular Linear Systems
LA_TBRFS
Triangular Linear Systems
LA_TBTRS
Triangular Linear Systems
LA_TGEVC
Computational Routines for the
LA_TGEXC
Computational Routines for the
LA_TGSEN
Computational Routines for the
LA_TGSJA
Computational Routines for the
LA_TGSNA
Computational Routines for the
LA_TGSYL
Computational Routines for the
LA_TPCON
Triangular Linear Systems
LA_TPRFS
Triangular Linear Systems
LA_TPTRI
Triangular Linear Systems
LA_TPTRS
Triangular Linear Systems
LA_TRCON
Triangular Linear Systems
LA_TREVC
Computational Routines for the
LA_TREXC
Computational Routines for the
LA_TRRFS
Triangular Linear Systems
LA_TRSEN
Computational Routines for the
LA_TRSNA
Computational Routines for the
LA_TRSYL
Computational Routines for the
LA_TRTRI
Triangular Linear Systems
LA_TRTRS
Triangular Linear Systems
LA_TZRZF
Computational Routines for Orthogonal
LA_UNGBR
Computational Routines for the
LA_UNGHR
Computational Routines for the | Computational Routines for the
LA_UNGLQ
Computational Routines for Orthogonal
LA_UNGQL
Computational Routines for Orthogonal
LA_UNGQR
Computational Routines for Orthogonal
LA_UNGRQ
Computational Routines for Orthogonal
LA_UNGTR
Computational Routines for the
LA_UNMBR
Computational Routines for the
LA_UNMHR
Computational Routines for the
LA_UNMLQ
Computational Routines for Orthogonal
LA_UNMQL
Computational Routines for Orthogonal
LA_UNMQR
Computational Routines for Orthogonal
LA_UNMRQ
Computational Routines for Orthogonal
LA_UNMRZ
Computational Routines for Orthogonal
LA_UNMTR
Computational Routines for the
LA_UPGTR
Computational Routines for the
LA_UPMTR
Computational Routines for the
LAPACK
Preface | Problems that LAPACK95 can | LAPACK | Performance Issues | Performance Tables
home page
LAPACK
Installation Guide
LAPACK
library
LAPACK95
package
LAPACK
test suites
LAPACK
Users' Guide
Symmetric Eigenproblems (SEP) | Symmetric Eigenproblems (SEP) | Singular Value Decomposition (SVD) | Generalized Nonsymmetric Eigenproblems (GNEP)
LAPACK95
Preface | LAPACK95 | Performance Tables
commercial use of
Commercial Use
documentation
Structure of the Documentation
driver routines
Driver Routines
FAQ
LAPACK95
home page
LAPACK95
naming
Design of the LAPACK95
source code
LAPACK95
test suites
LAPACK95
leading diagonal blocks
Computational Routines for the
least squares solution
Purpose | Purpose | Purpose | Purpose
libblas.a
How to call an | How to call an | How to call an
liblapack.a
How to call an | How to call an | How to call an | How to call an
liblapack95.a
How to call an | How to call an | How to call an
linear equations
Linear Equations
linear least squares problem
Problems that LAPACK95 can | Linear Least Squares (LLS)
equality-constrained
Purpose
generalized
Generalized Linear Least Squares
equality-constrained (LSE)
Generalized Linear Least Squares
regression model (GLM)
Generalized Linear Least Squares
weighted
Generalized Linear Least Squares
LINPACK
Preface
LLS (Linear Least Squares)
Linear Least Squares (LLS) | Linear Least Squares (LLS)
LOGICAL FUNCTION SELECT
Example 2 (from Program
lower bidiagonal
form
Computational Routines for the
matrix
Computational Routines for the
LQ factorization
Computational Routines for Orthogonal
LSE
Generalized Linear Least Squares | Generalized Linear Least Squares
problem
Purpose
LU factorization
Levels of Routines | General Linear Systems | General Linear Systems | General Linear Systems
machine
constants returned by LA_LAMCH
Machine Dependent Constants (Function
dependencies (ILAENV)
Incorporating Machine Dependencies
make.inc
LAPACK95
matrices
balancing
Computational Routines for the
bidiagonal
lower
Computational Routines for the
upper
Computational Routines for the
complex
unitary
Purpose | Purpose | Purpose | Purpose | Purpose | Purpose
complex general
band
Purpose | Purpose
dense
Purpose | Purpose
tridiagonal
Purpose | Purpose
complex Hermitian
Computational Routines for the
band storage
Computational Routines for the
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
indefinite
Symmetric Indefinite Linear Systems
indefinite, full storage
Purpose | Purpose
indefinite, packed storage
Purpose | Purpose | Symmetric Indefinite Linear Systems
inverse
Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
inverse, packed storage
Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
packed storage
Computational Routines for the
positive definite
Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems | Computational Routines for the
positive definite, band storage
Purpose | Purpose | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Computational Routines for the | Computational Routines for the
positive definite, full storage
Purpose | Purpose
positive definite, packed storage
Purpose | Purpose | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems | Computational Routines for the
positive definite, tridiagonal
LA_PTSV | Purpose | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear
complex symmetric
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
indefinite
Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems
indefinite, full storage
Purpose | Purpose
indefinite, packed storage
Purpose | Purpose | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems
inverse
Symmetric Indefinite Linear Systems
inverse, packed storage
Symmetric Indefinite Linear Systems
effective rank
Purpose
full rank
Purpose
general
inverse
General Linear Systems
orthogonal
Computational Routines for Orthogonal | Computational Routines for Orthogonal | Computational Routines for Orthogonal | Computational Routines for Orthogonal | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the
packed storage
Computational Routines for the
product
Computational Routines for Orthogonal
pencil
Generalized Nonsymmetric Eigenproblems (GNEP)
permutation
Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose
quasi-triangular
upper
Computational Routines for the | Computational Routines for the
rank deficient
Purpose
real general
band
Purpose | Purpose
dense
Purpose | Purpose
tridiagonal
Purpose | Purpose
real orthogonal
Purpose | Purpose | Purpose | Purpose | Purpose | Purpose
real symmetric
Computational Routines for the
band storage
Computational Routines for the
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
block diagonal $1 \times 1$ and $2 \times 2$
Purpose
indefinite
Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems
indefinite, full storage
Purpose | Purpose
indefinite, packed storage
Purpose | Purpose | Symmetric Indefinite Linear Systems | Symmetric Indefinite Linear Systems
inverse
Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
inverse, packed storage
Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
packed storage
Computational Routines for the
positive definite
Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Computational Routines for the
positive definite, band storage
Purpose | Purpose | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Computational Routines for the | Computational Routines for the
positive definite, full storage
Purpose | Purpose
positive definite, packed storage
Purpose | Purpose | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Computational Routines for the
positive definite, tridiagonal
LA_PTSV | Purpose | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear | Symmetric/Hermitian Positive Definite Linear
singular value problems
complex unitary
Purpose
real orthogonal
Purpose
Sylvester equation
Computational Routines for the
transformation
generalized singular value
Purpose
trapezoidal
Computational Routines for the
triangular
inverse
Triangular Linear Systems
packed, inverse
Triangular Linear Systems
upper
Computational Routines for the
unit lower triangular(L)
Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | LA_PTSV | Purpose | Purpose | Purpose | Purpose | Purpose
unitary
Computational Routines for Orthogonal | Computational Routines for Orthogonal | Computational Routines for Orthogonal | Computational Routines for Orthogonal | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the
packed storage
Computational Routines for the
product
Computational Routines for Orthogonal
upper
Hessenberg
Computational Routines for the | Computational Routines for the
trapezoidal
Computational Routines for Orthogonal
triangular (U)
Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | LA_PTSV | Purpose | Purpose | Purpose | Purpose | Purpose
matrix pairs
eigenvalues
generalized nonsymmetric
Purpose | Purpose
singular value
generalized
Purpose
megaflops
Performance Tables
memory allocation
Error Handling
minimum norm
least squares solution
Linear Least Squares (LLS) | Purpose | Purpose | Purpose
solution
Linear Least Squares (LLS) | Example 2 (from Program
mirror repositories of netlib
Mirror Repositories of netlib
MODULE
F77_LAPACK
How to call an | How to call an
F95_LAPACK
How to call an | How to call an
LA_AUXMOD
How to call an
LA_PRECISION
Data Types and Precision | How to call an | How to call an
MODULE statement
Data Types and Precision
naming scheme
Naming Scheme
computational routine
Naming Scheme
driver routine
Naming Scheme
LAPACK95
Design of the LAPACK95
near-singularity
Linear Equations
NEP
Nonsymmetric Eigenproblems (NEP)
netlib
LAPACK95
mirror repositories
Mirror Repositories of netlib
non-negative diagonal elements
Computational Routines for the | Computational Routines for the
nonsymmetric eigenproblem
generalized
Generalized Nonsymmetric Eigenproblems (GNEP)
Nonsymmetric Eigenvalue Problem
see NEP
ONLY option
Code for One Version
operation counts for LAPACK
Performance Tables | Performance Tables
optimal block size
Performance Tables
optional arguments
LAPACK95
OPTIONAL attribute
Design of the LAPACK95 | Code for One Version
orthogonal
matrix
Symmetric Eigenproblems (SEP)
orthonormal
basis
Nonsymmetric Eigenproblems (NEP) | Purpose | Purpose | Computational Routines for the
columns
Computational Routines for Orthogonal | Computational Routines for Orthogonal
rows
Computational Routines for Orthogonal | Computational Routines for Orthogonal
overdetermined system
Linear Least Squares (LLS) | Linear Least Squares (LLS)
packed
form
see packed storage
storage
Linear Equations | Matrix Storage Schemes
scheme
Example 1
partial pivoting
with row interchanges
General Linear Systems | General Linear Systems | General Linear Systems
pencil
see matrices
performance
Computers for which LAPACK95 | Computers for which LAPACK95 | LAPACK and the BLAS | Machine Dependent Constants (Function | BLAS | BLAS | Support | Performance Issues | Performance Tables
pivot growth factor
Linear Equations | Example (from Program LA_GESVX_EXAMPLE)
complex general
band matrix
Purpose
dense matrix
Purpose
real general
band matrix
Purpose
dense matrix
Purpose
poor performance
Errors and Poor Performance | Errors and Poor Performance | Errors and Poor Performance
positive definite
Linear Equations
precision
Data Types and Precision
QL factorization
Computational Routines for Orthogonal
QR factorization
Example 2 | Computational Routines for Orthogonal
generalized (GQR)
Generalized Linear Least Squares
with column pivoting
Computational Routines for Orthogonal
quasi-triangular matrix
Computational Routines for the | Computational Routines for the
quotient singular value decomposition
Generalized Singular Value Decomposition
rank
deficient of matrix
Purpose
of argument
Design of the LAPACK95
README
LAPACK95
reciprocal
condition number
Example (from Program LA_GESVX_EXAMPLE) | Example (from Program LA_PPSVX_EXAMPLE) | Example (from Program LA_PTSVX_EXAMPLE) | Example (from Program LA_GGESX_EXAMPLE) | Example (from Program LA_GGEVX_EXAMPLE)
condition numbers
Arguments
pivot growth factor
Example (from Program LA_GESVX_EXAMPLE)
reduction
to bidiagonal form
Computational Routines for the
to tridiagonal form
Example 1 (from Program | Computational Routines for the | Computational Routines for the | Computational Routines for the
reflectors
see elementary reflectors
regression, generalized linear
Generalized Linear Least Squares
Relatively Robust Representation
see RRR
release_notes
LAPACK
reliability
see test suites
residual sum-of-squares
Example (from Program LA_GGLSE_EXAMPLE)
right
eigenvectors
Nonsymmetric Eigenproblems (NEP)
singular vectors
Example 2 (from Program
row
index
Computational Routines for the
interchanges
Example 1
partial pivoting
General Linear Systems | General Linear Systems | General Linear Systems
RQ factorization
Computational Routines for Orthogonal
generalized (GRQ)
Generalized Linear Least Squares
RRR
driver
Symmetric Eigenproblems (SEP)
scaling
Purpose
Schur
complex form
Purpose | Purpose
decomposition
see factorization | see factorization
factorization
Nonsymmetric Eigenproblems (NEP) | Nonsymmetric Eigenproblems (NEP) | Purpose | Purpose | Purpose | Purpose | Purpose | Purpose | Computational Routines for the | Computational Routines for the
complex
Nonsymmetric Eigenproblems (NEP)
generalized
Generalized Nonsymmetric Eigenproblems (GNEP) | Computational Routines for the | Computational Routines for the
form
Computational Routines for the
generalized
complex form
Purpose | Purpose | Purpose | Purpose
left vectors
Purpose | Purpose | Purpose | Purpose
real form
Purpose | Purpose | Purpose | Purpose
right vectors
Purpose | Purpose | Purpose | Purpose
vectors
Generalized Nonsymmetric Eigenproblems (GNEP) | Purpose | Purpose | Purpose | Purpose
real form
Purpose | Purpose
vectors
Nonsymmetric Eigenproblems (NEP) | Nonsymmetric Eigenproblems (NEP) | Purpose | Example 2 (from Program | Purpose | Computational Routines for the
selected cluster of eigenvalues
Computational Routines for the
SEP
Symmetric Eigenproblems (SEP)
simple driver
Naming Scheme | Symmetric Eigenproblems (SEP) | Singular Value Decomposition (SVD)
single
shift
Computational Routines for the
singular
Generalized Nonsymmetric Eigenproblems (GNEP)
vectors
Singular Value Decomposition (SVD) | Purpose | Purpose | Computational Routines for the
compact form
Computational Routines for the
left
Singular Value Decomposition (SVD) | Purpose
right
Singular Value Decomposition (SVD) | Purpose | Purpose | Example 2 (from Program
singular value
Singular Value Decomposition (SVD) | Purpose | Purpose
bidiagonal factor
Computational Routines for the
decomposition
Singular Value Decomposition (SVD) | Purpose | Purpose
generalized
Generalized Singular Value Decomposition | Purpose
greatest
Arguments
problems
Problems that LAPACK95 can
singular value decomposition
Linear Least Squares (LLS)
generalized
Generalized Singular Value Decomposition | Generalized Singular Value Decomposition | Generalized Singular Value Decomposition
generalized, special cases
Generalized Singular Value Decomposition
quotient
Generalized Singular Value Decomposition
SLAMCH
LA_LAMCH Interfaces
spectral factorization
Symmetric Eigenproblems (SEP)
split Cholesky factorization
Computational Routines for the
SRC (directory)
LAPACK95
stability
Accuracy and Stability
standard
form
Computational Routines for the
packed form
Computational Routines for the
storage
scheme
Matrix Storage Schemes
band
Example 1
packed
Example 1
subspaces
deflating
Generalized Nonsymmetric Eigenproblems (GNEP)
invariant
Generalized Nonsymmetric Eigenproblems (GNEP)
SUNPERF
Performance Tables
support
Support | Support
SVD
see singular value decomposition | Computational Routines for the | Computational Routines for the
Sylvester
equation
Computational Routines for the
matrix equation
Computational Routines for the
symmetric
Linear Equations
eigenproblems (SEP)
Symmetric Eigenproblems (SEP)
matrices
Matrix Storage Schemes
Symmetric Eigenvalue Problem
see SEP
system of linear equations
Problems that LAPACK95 can
backward error
General Linear Systems | General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
band storage
Symmetric/Hermitian Positive Definite Linear
packed storage
Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
triangular band
Triangular Linear Systems
triangular matrix
Triangular Linear Systems
triangular packed
Triangular Linear Systems
tridiagonal
Symmetric/Hermitian Positive Definite Linear
condition number
General Linear Systems
equilibration
General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear
band storage
Symmetric/Hermitian Positive Definite Linear
packed storage
Symmetric/Hermitian Positive Definite Linear
error bounds
General Linear Systems | General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
band storage
Symmetric/Hermitian Positive Definite Linear
packed storage
Symmetric/Hermitian Positive Definite Linear | Symmetric Indefinite Linear Systems
triangular band
Triangular Linear Systems
triangular matrix
Triangular Linear Systems
triangular packed
Triangular Linear Systems
tridiagonal
Symmetric/Hermitian Positive Definite Linear
scaling
General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear
band storage
Symmetric/Hermitian Positive Definite Linear
packed storage
Symmetric/Hermitian Positive Definite Linear
solution
General Linear Systems | General Linear Systems | General Linear Systems | Symmetric/Hermitian Positive Definite Linear
band storage
Symmetric/Hermitian Positive Definite Linear
packed storage
Symmetric/Hermitian Positive Definite Linear
symmetric indefinite
Symmetric Indefinite Linear Systems
symmetric indefinite, packed storage
Symmetric Indefinite Linear Systems
triangular band
Triangular Linear Systems
triangular matrix
Triangular Linear Systems
triangular packed
Triangular Linear Systems
tridiagonal
Symmetric/Hermitian Positive Definite Linear
test suites
LAPACK95 | LAPACK | Errors and Poor Performance
TESTING (directory)
LAPACK95
TIMING (directory)
LAPACK95
transformation
backward
Computational Routines for the | Computational Routines for the
equivalence
orthogonal
Computational Routines for the | Computational Routines for the
unitary
Computational Routines for the | Computational Routines for the
orthogonal
Purpose | Computational Routines for Orthogonal | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the
similarity
orthogonal
Computational Routines for the
orthogonal, band storage
Computational Routines for the
orthogonal, packed storage
Computational Routines for the
unitary
Computational Routines for the
unitary, band storage
Computational Routines for the
unitary, packed storage
Computational Routines for the
unitary
Purpose | Computational Routines for Orthogonal | Computational Routines for the | Computational Routines for the | Computational Routines for the | Computational Routines for the
trapezoidal matrices
Computational Routines for the
triangular
factor
Cholesky
Example 2 (from Program | Example 1 (from Program | Example 2 (from Program
matrices
Matrix Storage Schemes
tridiagonal
form
Levels of Routines
matrices
Matrix Storage Schemes
troubleshooting
Performance and Troubleshooting
underdetermined system
Linear Least Squares (LLS) | Linear Least Squares (LLS)
unitary
matrix
Symmetric Eigenproblems (SEP) | Example 1 (from Program
upper
bidiagonal
form
Computational Routines for the | Computational Routines for the
matrix
Computational Routines for the
Hessenberg matrix
Computational Routines for the | Computational Routines for the
trapezoidal matrix
Computational Routines for Orthogonal
triangular
form
Computational Routines for Orthogonal
matrices
Computational Routines for the
USE
F77_LAPACK
How to call an | Code for One Version
F95_LAPACK
How to call an
LA_AUXMOD
How to call an | Code for One Version
LA_PRECISION
How to call an | Code for One Version
DP
Data Types and Precision
SP
Data Types and Precision
USE statement
Data Types and Precision | Data Types and Precision
vendor supplied BLAS
BLAS
weighted linear least squares
Purpose
working precision (WP)
Example 2
zero-sized array
Design of the LAPACK95



Susan Blackford 2001-08-19