Next: About this document ...
Up: LAPACK95 Users' Guide
Previous: Bibliography
  Contents
- absolute error
- Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
- accuracy and stability
- Accuracy and Stability
- algorithms
- Bunch-Kaufman
- full storage
- Purpose
| Purpose
| Symmetric Indefinite Linear Systems
- packed storage
- Purpose
| Purpose
| Symmetric Indefinite Linear Systems
- Cholesky decomposition
- Purpose
| Symmetric/Hermitian Positive Definite Linear
- band storage
- Purpose
| Purpose
| Symmetric/Hermitian Positive Definite Linear
- full storage
- Purpose
| Purpose
| Symmetric/Hermitian Positive Definite Linear
- packed storage
- Purpose
| Purpose
| Symmetric/Hermitian Positive Definite Linear
- tridiagonal
- LA_PTSV
| Purpose
- divide and conquer
- Computational Routines for the
- generalized symmetric, band storage
- Purpose
- generalized symmetric, full storage
- Purpose
- generalized symmetric, packed storage
- Purpose
- least squares
- Purpose
- singular value problems
- Purpose
- symmetric tridiagonal
- Purpose
- symmetric, band storage
- Purpose
- symmetric, full storage
- Purpose
- symmetric, packed storage
- Purpose
- Gaussian elimination with row interchanges
- band storage
- Purpose
| Purpose
- dense storage
- Purpose
| Purpose
- tridiagonal
- Purpose
| Purpose
- inverse iteration
- Computational Routines for the
- LDL decomposition
- full storage
- Purpose
- LDL decomposition
- full storage
- Purpose
- LDL decomposition
- packed storage
- Purpose
- LDL decomposition
- packed storage
- Purpose
- Pal-Walker-Kahan
- Computational Routines for the
- QR
- Arguments
| Arguments
- RRR
- Purpose
| Purpose
- Schur decomposition
- see Schur
- UDU decomposition
- full storage
- Purpose
- UDU decomposition
- full storage
- Purpose
- UDU decomposition
- packed storage
- Purpose
- UDU decomposition
- packed storage
- Purpose
- ALLOCATABLE attribute
- Design of the LAPACK95
- ALLOCATE statement
- Design of the LAPACK95
- arguments
- assumed-shape arrays
- Array Arguments
- description
- Argument Descriptions
- descriptions
- Argument Descriptions
- illegal value
- Error Handling
- optional
- Design of the LAPACK95
| Optional Arguments
- order of
- Order of Arguments
- rank
- Design of the LAPACK95
- arrays
- allocatable
- Design of the LAPACK95
| Example 1
- assumed-shape
- LAPACK95
| Design of the LAPACK95
| Design of the LAPACK95
| Array Arguments
- empty
- Design of the LAPACK95
- passing subsections
- Design of the LAPACK95
- ATLAS
- LAPACK and the BLAS
| BLAS
| Performance Tables
- automatic allocation
- Design of the LAPACK95
- auxiliary
- enquiry function ILAENV
- Optimal Value of the
- routines
- Levels of Routines
| How to call an
- backward error
- Example (from Program LA_GESVX_EXAMPLE)
| Example (from Program LA_GBSVX_EXAMPLE)
| Example (from Program LA_PPSVX_EXAMPLE)
| Example (from Program LA_PTSVX_EXAMPLE)
| General Linear Systems
| General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
| Triangular Linear Systems
| Triangular Linear Systems
| Triangular Linear Systems
- bounds
- Linear Equations
- backward transformation
- Computational Routines for the
| Computational Routines for the
- balanced pair of matrices
- Computational Routines for the
- balancing
- Purpose
| Computational Routines for the
- transformation
- Purpose
- band
- form
- see band storage
- storage
- Linear Equations
- scheme
- Example 1
| Example 1
| Example 1
- Basic Linear Algebra Subprograms
- see BLAS
- bidiagonal
- factor
- Computational Routines for the
- form
- Computational Routines for the
- matrices
- Matrix Storage Schemes
| Matrix Storage Schemes
- BLAS
- Preface
| Performance Tables
- library
- BLAS
- model implementation
- BLAS
- optimized
- BLAS
- vendor implementation
- BLAS
- block
- algorithms
- Preface
| Optimal Value of the
- size
- Incorporating Machine Dependencies
| Performance Tables
- bug reports
- Support
- Bunch-Kaufman
- see algorithms
- call LAPACK95 routines
- Example 1
| Example 2
- CD-ROM
- Availability of Software via
- Cholesky
- see algorithms, decomposition and factorization
- column equilibration
- Example (from Program LA_GBSVX_EXAMPLE)
- commercial use
- Commercial Use
- complex
- conjugate pairs
- Nonsymmetric Eigenproblems (NEP)
| Generalized Nonsymmetric Eigenproblems (GNEP)
- Hermitian
- Linear Equations
- Schur factorization
- Nonsymmetric Eigenproblems (NEP)
- symmetric
- Linear Equations
- computation
- failure
- Error Handling
- computational routines
- Problems that LAPACK95 can
| Problems that LAPACK95 can
| Levels of Routines
| Design of Interfaces for
- condition number
- Linear Equations
| Purpose
- eigenvalues
- generalized nonsymmetric
- Purpose
| Purpose
- nonsymmetric
- Arguments
- eigenvectors
- generalized nonsymmetric
- Purpose
| Purpose
- nonsymmetric
- Arguments
- right
- Computational Routines for the
- invariant subspace
- nonsymmetric
- Purpose
- selected eigenvalues
- nonsymmetric
- Purpose
- specified eigenvalues
- Computational Routines for the
- condition number of the system
- complex general
- band
- Purpose
- dense
- Purpose
| General Linear Systems
- triangular band
- Triangular Linear Systems
- triangular matrix
- Triangular Linear Systems
- triangular packed
- Triangular Linear Systems
- tridiagonal
- Purpose
- complex Hermitian
- band storage
- Symmetric/Hermitian Positive Definite Linear
- dense
- Symmetric/Hermitian Positive Definite Linear
- indefinite, full storage
- Purpose
| Symmetric Indefinite Linear Systems
- indefinite, packed storage
- Purpose
| Symmetric Indefinite Linear Systems
- packed storage
- Symmetric/Hermitian Positive Definite Linear
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- positive definite, tridiagonal
- Purpose
- tridiagonal
- Symmetric/Hermitian Positive Definite Linear
- complex symmetric
- indefinite, full storage
- Purpose
| Symmetric Indefinite Linear Systems
- indefinite, packed storage
- Purpose
| Symmetric Indefinite Linear Systems
- general band
- General Linear Systems
- real general
- band
- Purpose
- dense
- Purpose
| General Linear Systems
- triangular band
- Triangular Linear Systems
- triangular matrix
- Triangular Linear Systems
- triangular packed
- Triangular Linear Systems
- tridiagonal
- Purpose
- real symmetric
- dense
- Symmetric/Hermitian Positive Definite Linear
- dense, band storage
- Symmetric/Hermitian Positive Definite Linear
- indefinite, full storage
- Purpose
| Symmetric Indefinite Linear Systems
- indefinite, packed storage
- Purpose
| Symmetric Indefinite Linear Systems
- packed storage
- Symmetric/Hermitian Positive Definite Linear
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- positive definite, tridiagonal
- Purpose
- tridiagonal
- Symmetric/Hermitian Positive Definite Linear
- tridiagonal
- General Linear Systems
- constructing LAPACK routines
- LAPACK and the BLAS
- conventional storage
- Matrix Storage Schemes
- Cosine-Sine decomposition
- Generalized Singular Value Decomposition
- CPU_TIME
- Performance Tables
- CXML
- Performance Tables
- data types
- Data Types and Precision
- debugging
- hints, installation
- Installation Debugging Hints
- release_notes
- Installation Debugging Hints
- decomposition
- Cholesky
- Symmetric/Hermitian Positive Definite Linear
- band storage
- Symmetric/Hermitian Positive Definite Linear
- packed storage
- Symmetric/Hermitian Positive Definite Linear
- tridiagonal
- Symmetric/Hermitian Positive Definite Linear
- singular values
- Purpose
- deflating subspace
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Generalized Nonsymmetric Eigenproblems (GNEP)
| Arguments
| Example (from Program LA_GGESX_EXAMPLE)
- derived types
- Design of the LAPACK95
- diagonal
- block
- Computational Routines for the
| Computational Routines for the
- blocks
- Nonsymmetric Eigenproblems (NEP)
| Generalized Nonsymmetric Eigenproblems (GNEP)
| Computational Routines for the
- elements
- Symmetric Eigenproblems (SEP)
| Argument Descriptions
- entries
- Generalized Singular Value Decomposition
- matrices
- Symmetric Eigenproblems (SEP)
| Singular Value Decomposition (SVD)
| Generalized Symmetric Definite Eigenproblems
| Generalized Singular Value Decomposition
| Generalized Singular Value Decomposition
- divide and conquer
- Generalized Symmetric Definite Eigenproblems
- driver
- Symmetric Eigenproblems (SEP)
- least squares
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
- method
- Computational Routines for the
- SVD
- Singular Value Decomposition (SVD)
- DLAMCH
- LA_LAMCH Interfaces
- documentation, structure
- Structure of the Documentation
- driver routines
- Problems that LAPACK95 can
| Problems that LAPACK95 can
| Levels of Routines
| Driver Routines
| Performance Tables
- divide and conquer
- Linear Least Squares (LLS)
| Singular Value Decomposition (SVD)
| Generalized Symmetric Definite Eigenproblems
- expert
- Linear Equations
| Generalized Symmetric Definite Eigenproblems
- generalized
- least squares
- Generalized Linear Least Squares
- nonsymmetric eigenvalue problem
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Generalized Nonsymmetric Eigenproblems (GNEP)
- SVD
- Generalized Singular Value Decomposition
- symmetric definite eigenvalue problem
- Generalized Symmetric Definite Eigenproblems
- linear
- equations
- Linear Equations
- least squares
- Linear Least Squares (LLS)
- nonsymmetric eigenvalue problem
- Nonsymmetric Eigenproblems (NEP)
- simple
- Linear Equations
| Generalized Symmetric Definite Eigenproblems
- effective rank of matrix
- Purpose
- eigenvalue problem
- Problems that LAPACK95 can
- ill-conditioned
- Generalized Nonsymmetric Eigenproblems (GNEP)
- regular
- Generalized Nonsymmetric Eigenproblems (GNEP)
- singular
- Generalized Nonsymmetric Eigenproblems (GNEP)
- eigenvalues
- Symmetric Eigenproblems (SEP)
| Symmetric Eigenproblems (SEP)
- all
- generalized nonsymmetric
- Purpose
- generalized symmetric, band storage
- Purpose
- generalized symmetric, full storage
- Purpose
- generalized symmetric, packed storage
- Purpose
- nonsymmetric
- Purpose
| Purpose
- symmetric tridiagonal
- Purpose
- symmetric, band storage
- Purpose
- symmetric, full storage
- Purpose
- symmetric, packed storage
- Purpose
- approximate
- generalized symmetric, band storage
- Arguments
- generalized symmetric, full storage
- Arguments
| Arguments
- symmetric tridiagonal
- Arguments
| Arguments
- symmetric, band storage
- Arguments
- symmetric, full storage
- Arguments
| Arguments
- symmetric, packed storage
- Arguments
- condition number
- nonsymmetric
- Purpose
| Arguments
- divide and conquer method
- Computational Routines for the
- generalized
- Computational Routines for the
- ordering of
- Generalized Nonsymmetric Eigenproblems (GNEP)
- nontrivial
- Generalized Singular Value Decomposition
- ordering of
- Nonsymmetric Eigenproblems (NEP)
- Pal-Walker-Kahan algorithm
- Computational Routines for the
- reciprocal condition numbers
- Computational Routines for the
- selected
- complex Hermitian
- Computational Routines for the
- generalized nonsymmetric
- Purpose
| Purpose
| Purpose
- generalized symmetric, band storage
- Purpose
- generalized symmetric, full storage
- Purpose
- generalized symmetric, packed storage
- Purpose
- nonsymmetric
- Purpose
| Purpose
- real symmetric
- Computational Routines for the
- symmetric tridiagonal
- Purpose
| Purpose
- symmetric, band storage
- Purpose
- symmetric, full storage
- Purpose
| Purpose
- symmetric, packed storage
- Purpose
- selected cluster
- Computational Routines for the
| Computational Routines for the
- symmetric
- positive definite tridiagonal matrix
- Computational Routines for the
- tridiagonal matrix
- Computational Routines for the
- trivial
- Generalized Singular Value Decomposition
- eigenvectors
- Symmetric Eigenproblems (SEP)
- all
- generalized nonsymmetric
- Purpose
- generalized symmetric, band storage
- Purpose
- generalized symmetric, full storage
- Purpose
- generalized symmetric, packed storage
- Purpose
- nonsymmetric
- Purpose
| Purpose
- symmetric tridiagonal
- Purpose
- symmetric, band storage
- Purpose
- symmetric, full storage
- Purpose
- symmetric, packed storage
- Purpose
- complex conjugate pairs
- nonsymmetric
- Arguments
| Arguments
- condition number
- nonsymmetric
- Purpose
| Arguments
- left
- Nonsymmetric Eigenproblems (NEP)
| Generalized Nonsymmetric Eigenproblems (GNEP)
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
- generalized
- Computational Routines for the
- nonsymmetric
- Purpose
| Purpose
- NEP
- Nonsymmetric Eigenproblems (NEP)
- normalized
- nonsymmetric
- Purpose
- orthogonal
- generalized symmetric, band storage
- Arguments
- generalized symmetric, full storage
- Arguments
- generalized symmetric, packed storage
- Arguments
- reciprocal condition numbers
- Computational Routines for the
- right
- Nonsymmetric Eigenproblems (NEP)
| Generalized Nonsymmetric Eigenproblems (GNEP)
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
- generalized
- Computational Routines for the
- nonsymmetric
- Purpose
| Purpose
- scaled
- nonsymmetric
- Purpose
| Arguments
| Purpose
- selected
- complex Hermitian
- Computational Routines for the
- generalized nonsymmetric
- Purpose
| Purpose
| Purpose
- generalized symmetric, band storage
- Purpose
- generalized symmetric, full storage
- Purpose
- generalized symmetric, packed storage
- Purpose
- nonsymmetric
- Purpose
| Purpose
- real symmetric
- Computational Routines for the
- symmetric tridiagonal
- Purpose
| Purpose
- symmetric, band storage
- Purpose
- symmetric, full storage
- Purpose
| Purpose
- symmetric, packed storage
- Purpose
- usually the fastest algorithm
- Purpose
| Purpose
- symmetric
- positive definite tridiagonal matrix
- Computational Routines for the
- tridiagonal matrix
- Computational Routines for the
| Computational Routines for the
- EISPACK
- Preface
- elementary reflectors
- Computational Routines for the
- elimination
- see also factorization or decomposition in algorithms
- equality-constrained least squares
- Generalized Linear Least Squares
- equilibration
- Linear Equations
| General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
- by column
- Example (from Program LA_GBSVX_EXAMPLE)
- complex general
- band
- Purpose
- dense
- Purpose
- complex Hermitian
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- real general
- band
- Purpose
- dense
- Purpose
- real symmetric
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- ERINFO
- Error Handling
| Error Handling
| Error Handling
| Error Handling
- errata
- see release_notes
- error
- bounds
- General Linear Systems
| General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
| Triangular Linear Systems
| Triangular Linear Systems
| Triangular Linear Systems
- handling
- Design of the LAPACK95
| Error Handling
- routine
- Error Handling
- error bounds for linear systems
- complex general
- band
- Purpose
- dense
- Purpose
- tridiagonal
- Purpose
- complex Hermitian
- indefinite, full storage
- Purpose
- indefinite, packed storage
- Purpose
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- positive definite, tridiagonal
- Purpose
- complex symmetric
- indefinite, full storage
- Purpose
- indefinite, packed storage
- Purpose
- real general
- band
- Purpose
- dense
- Purpose
- tridiagonal
- Purpose
- real symmetric
- indefinite, full storage
- Purpose
- indefinite, packed storage
- Purpose
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- positive definite, tridiagonal
- Purpose
- ESSL
- Performance Tables
- Euclidean norm
- Arguments
| Purpose
- EXAMPLES1 (directory)
- LAPACK95
- EXAMPLES2 (directory)
- LAPACK95
- expert driver
- Symmetric Eigenproblems (SEP)
- description
- Structure of the Documentation
- f77_lapack.mod
- How to call an
| How to call an
- f95_lapack.mod
- How to call an
| How to call an
- factorization
- see also decomposition or elimination in algorithms
- Cholesky
- Arguments
| Example 2 (from Program
| Arguments
| Example 1 (from Program
| Example 2 (from Program
| Arguments
| Symmetric/Hermitian Positive Definite Linear
- band storage
- Symmetric/Hermitian Positive Definite Linear
- packed storage
- Symmetric/Hermitian Positive Definite Linear
- tridiagonal
- Symmetric/Hermitian Positive Definite Linear
- complex Hermitian
- indefinite matrix
- Symmetric Indefinite Linear Systems
- indefinite matrix, packed storage
- Symmetric Indefinite Linear Systems
- complex symmetric
- indefinite matrix
- Symmetric Indefinite Linear Systems
- indefinite matrix, packed storage
- Symmetric Indefinite Linear Systems
- Gauss
- Purpose
- generalized
- Purpose
- generalized RQ
- Purpose
- LQ
- Purpose
| Computational Routines for Orthogonal
- LU
- Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| General Linear Systems
| General Linear Systems
| General Linear Systems
- QL
- Computational Routines for Orthogonal
- QR
- Purpose
| Purpose
| Arguments
| Arguments
| Computational Routines for Orthogonal
- with column pivoting
- Computational Routines for Orthogonal
- real symmetric
- indefinite matrix
- Symmetric Indefinite Linear Systems
- indefinite matrix, packed storage
- Symmetric Indefinite Linear Systems
- RQ
- Computational Routines for Orthogonal
- Schur
- Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
- split Cholesky
- Computational Routines for the
- FAQ
- LAPACK95
- Fortran standard
- Preface
- Fortran 77
- Preface
| Performance Issues
| Performance Issues
- Fortran 95
- Preface
| LAPACK95
| Performance Issues
| Performance Issues
- wrappers
- LAPACK95
- forward error
- Example (from Program LA_GESVX_EXAMPLE)
| Example (from Program LA_GBSVX_EXAMPLE)
| Example (from Program LA_PPSVX_EXAMPLE)
| Example (from Program LA_PTSVX_EXAMPLE)
- bounds
- Linear Equations
- Frequently Asked Questions
- see FAQ
- Gauss
- see algorithms and factorization
- Gauss-Markov
- see GLM
- General Gauss-Markov Linear Model Problem
- see GLM
- Generalized Factorization
- see GRQ
- Generalized Factorization
- see GQR
- generalized eigenproblem
- Computational Routines for the
| Computational Routines for the
- banded, reduction
- Computational Routines for the
- nonsymmetric
- Generalized Nonsymmetric Eigenproblems (GNEP)
- packed form
- Computational Routines for the
- generalized least squares
- Generalized Linear Least Squares
- Generalized Nonsymmetric Eigenvalue Problem
- see GNEP
- generalized Schur
- decomposition
- Generalized Nonsymmetric Eigenproblems (GNEP)
- vectors
- Generalized Nonsymmetric Eigenproblems (GNEP)
- generalized singular value
- Generalized Singular Value Decomposition
| Example 1 (from Program
- Generalized Singular Value Decomposition
- see GSVD
- special cases
- Generalized Singular Value Decomposition
- generalized Sylvester equation
- Computational Routines for the
- Generalized Symmetric Eigenvalue Problem
- see GSEP
- generalized upper Hessenberg form
- Computational Routines for the
- generic
- interface blocks
- F77_LAPACK Generic Interface Blocks
- interfaces
- LAPACK95
| Design of the LAPACK95
- GLM
- Generalized Linear Least Squares
- problem
- Purpose
- GNEP
- Generalized Nonsymmetric Eigenproblems (GNEP)
- GQR
- Generalized Linear Least Squares
| Generalized Linear Least Squares
- GRQ
- Generalized Linear Least Squares
| Generalized Linear Least Squares
- GSEP
- Generalized Symmetric Definite Eigenproblems
- GSVD
- Generalized Singular Value Decomposition
| see Generalized Singular Value Decomposition
| Computational Routines for the
- Hermitian
- Linear Equations
- eigenvalue problem
- Symmetric Eigenproblems (SEP)
- matrices
- Matrix Storage Schemes
- Hessenberg
- upper
- Computational Routines for the
| Computational Routines for the
- generalized form
- Computational Routines for the
- ILAENV
- Optimal Value of the
| Optimal Value of the
| Code for One Version
- illegal argument
- Optional Arguments
- inconsistent shapes
- Error Handling
- indefinite symmetric
- Linear Equations
- Independent Software Vendor
- see ISV
- INFO
- Error Handling
- installation
- Availability and Installation of
- debugging hints
- Installation Debugging Hints
- insufficient memory
- Error Handling
- INTENT attribute
- IN
- Code for One Version
- INOUT
- Code for One Version
- OUT
- Code for One Version
- INTERFACE statement
- LA_SYEV/LA_HEEV
| LA_SYEV/LA_HEEV
| LA_GESV Multiple Case
| LA_SYEV/LA_HEEV
| LA_GESV
- interfaces
- generic
- Design of the LAPACK95
- invalid
- argument
- Error Handling
- shape
- Error Handling
- invariant subspace
- Nonsymmetric Eigenproblems (NEP)
| Generalized Nonsymmetric Eigenproblems (GNEP)
| Purpose
| Purpose
| Computational Routines for the
- inverse of a matrix
- General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
| Triangular Linear Systems
| Triangular Linear Systems
- ISV
- BLAS
- iterative refinement of the system
- complex general
- band
- Purpose
- dense
- Purpose
- tridiagonal
- Purpose
- complex Hermitian
- indefinite, full storage
- Purpose
- indefinite, packed storage
- Purpose
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- positive definite, tridiagonal
- Purpose
- complex symmetric
- indefinite, full storage
- Purpose
- indefinite, packed storage
- Purpose
- real general
- band
- Purpose
- dense
- Purpose
- tridiagonal
- Purpose
- real symmetric
- indefinite, full storage
- Purpose
- indefinite, packed storage
- Purpose
- positive definite, band storage
- Purpose
- positive definite, full storage
- Purpose
- positive definite, packed storage
- Purpose
- positive definite, tridiagonal
- Purpose
- KIND type parameter
- Data Types and Precision
- la_auxmod.mod
- How to call an
- LA_BDSDC
- Computational Routines for the
- LA_BDSQR
- Computational Routines for the
- LA_GBBRD
- Computational Routines for the
- LA_GBCON
- General Linear Systems
- LA_GBEQU
- General Linear Systems
- LA_GBRFS
- General Linear Systems
- LA_GBSV
- Linear Equations
| LA_GBSV
- LA_GBSVX
- Linear Equations
| LA_GBSVX
- LA_GBTRF
- General Linear Systems
- LA_GBTRS
- General Linear Systems
- LA_GEBAK
- Computational Routines for the
- LA_GEBAL
- Computational Routines for the
- LA_GEBRD
- Computational Routines for the
- LA_GECON
- General Linear Systems
- LA_GEEQU
- General Linear Systems
- LA_GEES
- Nonsymmetric Eigenproblems (NEP)
| Singular Value Decomposition (SVD)
| LA_GEES
- LA_GEESX
- Nonsymmetric Eigenproblems (NEP)
| Singular Value Decomposition (SVD)
| LA_GEESX
- LA_GEEV
- Nonsymmetric Eigenproblems (NEP)
| Singular Value Decomposition (SVD)
| Performance Tables
| Performance Tables
| Performance Tables
| Performance Tables
| LA_GEEV
- LA_GEEVX
- Nonsymmetric Eigenproblems (NEP)
| Singular Value Decomposition (SVD)
| LA_GEEVX
- LA_GEHRD
- Computational Routines for the
- LA_GELQF
- Computational Routines for Orthogonal
- LA_GELS
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
| LA_GELS
- LA_GELSD
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
| Linear Least Squares (LLS)
| LA_GELSS / LA_GELSD
- LA_GELSS
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
| Linear Least Squares (LLS)
| LA_GELSS / LA_GELSD
- LA_GELSY
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
| Linear Least Squares (LLS)
| LA_GELSY
- LA_GEQLF
- Computational Routines for Orthogonal
- LA_GEQP3
- Computational Routines for Orthogonal
- LA_GEQRF
- Example 2
| Computational Routines for Orthogonal
- LA_GERFS
- General Linear Systems
- LA_GERQF
- Computational Routines for Orthogonal
- LA_GESDD
- Singular Value Decomposition (SVD)
| Singular Value Decomposition (SVD)
| Performance Tables
| Performance Tables
| Performance Tables
| Performance Tables
| LA_GESVD / LA_GESDD
- LA_GESV
- Linear Equations
| Array Arguments
| Example 1
| Performance Tables
| Performance Tables
| Performance Tables
| LA_GESV
- LA_GESVD
- Singular Value Decomposition (SVD)
| Singular Value Decomposition (SVD)
| Performance Tables
| Performance Tables
| Performance Tables
| Performance Tables
| LA_GESVD / LA_GESDD
- LA_GESVX
- Linear Equations
| LA_GESVX
- LA_GETRF
- General Linear Systems
- LA_GETRI
- General Linear Systems
- LA_GETRS
- General Linear Systems
- LA_GGBAK
- Computational Routines for the
- LA_GGBAL
- Computational Routines for the
- LA_GGES
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Generalized Singular Value Decomposition
| LA_GGES
- LA_GGESX
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Generalized Singular Value Decomposition
| LA_GGESX
- LA_GGEV
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Generalized Singular Value Decomposition
| LA_GGEV
- LA_GGEVX
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Generalized Singular Value Decomposition
| LA_GGEVX
- LA_GGGLM
- Generalized Linear Least Squares
| Generalized Linear Least Squares
| LA_GGGLM
- LA_GGHRD
- Computational Routines for the
- LA_GGLSE
- Generalized Linear Least Squares
| LA_GGLSE
- LA_GGSVD
- Generalized Singular Value Decomposition
| Generalized Singular Value Decomposition
| LA_GGSVD
- LA_GGSVP
- Computational Routines for the
- LA_GTCON
- General Linear Systems
- LA_GTRFS
- General Linear Systems
- LA_GTSV
- Linear Equations
| LA_GTSV
- LA_GTSVX
- Linear Equations
| LA_GTSVX
- LA_GTTRF
- General Linear Systems
- LA_GTTRS
- General Linear Systems
- LA_HBEV
- Singular Value Decomposition (SVD)
| LA_SBEV / LA_HBEV /
- LA_HBEVD
- Singular Value Decomposition (SVD)
| LA_SBEV / LA_HBEV /
- LA_HBEVX
- Singular Value Decomposition (SVD)
| LA_SBEVX / LA_HBEVX
- LA_HBGST
- Computational Routines for the
- LA_HBGV
- Generalized Singular Value Decomposition
| LA_SBGV / LA_SBGVD /
- LA_HBGVD
- Generalized Singular Value Decomposition
| LA_SBGV / LA_SBGVD /
- LA_HBGVX
- Generalized Singular Value Decomposition
| LA_SBGVX / LA_HBGVX
- LA_HBTRD
- Computational Routines for the
- LA_HECON
- Symmetric Indefinite Linear Systems
- LA_HEEV
- Singular Value Decomposition (SVD)
| LA_SYEV / LA_HEEV /
- LA_HEEVD
- Singular Value Decomposition (SVD)
| LA_SYEV / LA_HEEV /
- LA_HEEVR
- Singular Value Decomposition (SVD)
| LA_SYEVR / LA_HEEVR
- LA_HEEVX
- Singular Value Decomposition (SVD)
| LA_SYEVX / LA_HEEVX
- LA_HEGST
- Computational Routines for the
- LA_HEGV
- Generalized Singular Value Decomposition
| LA_SYGV /LA_SYGVD / LA_HEGV
- LA_HEGVD
- Generalized Singular Value Decomposition
| LA_SYGV /LA_SYGVD / LA_HEGV
- LA_HEGVX
- Generalized Singular Value Decomposition
| LA_SYGVX / LA_HEGVX
- LA_HERFS
- Symmetric Indefinite Linear Systems
- LA_HESV
- Linear Equations
| LA_SYSV / LA_HESV
- LA_HESVX
- Linear Equations
| LA_SYSVX / LA_HESVX
- LA_HETRD
- Computational Routines for the
- LA_HETRF
- Symmetric Indefinite Linear Systems
- LA_HETRI
- Symmetric Indefinite Linear Systems
- LA_HETRS
- Symmetric Indefinite Linear Systems
- LA_HGEQZ
- Computational Routines for the
- LA_HPCON
- Symmetric Indefinite Linear Systems
- LA_HPEV
- Singular Value Decomposition (SVD)
| LA_SPEV / LA_HPEV /
- LA_HPEVD
- Singular Value Decomposition (SVD)
| LA_SPEV / LA_HPEV /
- LA_HPEVX
- Singular Value Decomposition (SVD)
| LA_SPEVX / LA_HPEVX
- LA_HPGST
- Computational Routines for the
- LA_HPGV
- Generalized Singular Value Decomposition
| LA_SPGV / LA_SPGVD /
- LA_HPGVD
- Generalized Singular Value Decomposition
| LA_SPGV / LA_SPGVD /
- LA_HPGVX
- Generalized Singular Value Decomposition
| LA_SPGVX / LA_HPGVX
- LA_HPRFS
- Symmetric Indefinite Linear Systems
- LA_HPSV
- Linear Equations
| LA_SPSV / LA_HPSV
- LA_HPSVX
- Linear Equations
| LA_SPSVX / LA_HPSVX
- LA_HPTRD
- Computational Routines for the
- LA_HPTRF
- Symmetric Indefinite Linear Systems
- LA_HPTRI
- Symmetric Indefinite Linear Systems
- LA_HPTRS
- Symmetric Indefinite Linear Systems
- LA_HSEIN
- Computational Routines for the
- LA_HSEQR
- Computational Routines for the
- LA_LAMCH
- Machine Dependent Constants (Function
| LA_LAMCH Interfaces
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
| Arguments
- LA_OPGTR
- Computational Routines for the
- LA_OPMTR
- Computational Routines for the
- LA_ORGBR
- Computational Routines for the
- LA_ORGLQ
- Computational Routines for Orthogonal
- LA_ORGQL
- Computational Routines for Orthogonal
- LA_ORGQR
- Computational Routines for Orthogonal
- LA_ORGRQ
- Computational Routines for Orthogonal
- LA_ORGTR
- Computational Routines for the
- LA_ORMBR
- Computational Routines for the
- LA_ORMHR
- Computational Routines for the
- LA_ORMLQ
- Computational Routines for Orthogonal
- LA_ORMQL
- Computational Routines for Orthogonal
- LA_ORMQR
- Computational Routines for Orthogonal
- LA_ORMRQ
- Computational Routines for Orthogonal
- LA_ORMRZ
- Computational Routines for Orthogonal
- LA_ORMTR
- Computational Routines for the
- LA_PBCON
- Symmetric/Hermitian Positive Definite Linear
- LA_PBEQU
- Symmetric/Hermitian Positive Definite Linear
- LA_PBRFS
- Symmetric/Hermitian Positive Definite Linear
- LA_PBSTF
- Computational Routines for the
- LA_PBSV
- Linear Equations
| LA_PBSV
- LA_PBSVX
- Linear Equations
| LA_PBSVX
- LA_PBTRF
- Symmetric/Hermitian Positive Definite Linear
- LA_PBTRS
- Symmetric/Hermitian Positive Definite Linear
- LA_POCON
- Symmetric/Hermitian Positive Definite Linear
- LA_POEQU
- Symmetric/Hermitian Positive Definite Linear
- LA_PORFS
- Symmetric/Hermitian Positive Definite Linear
- LA_POSV
- Linear Equations
| Optional Arguments
| LA_POSV
- LA_POSVX
- Linear Equations
| LA_POSVX
- LA_POTRF
- Symmetric/Hermitian Positive Definite Linear
- LA_POTRI
- Symmetric/Hermitian Positive Definite Linear
- LA_POTRS
- Symmetric/Hermitian Positive Definite Linear
- LA_PPCON
- Symmetric/Hermitian Positive Definite Linear
- LA_PPEQU
- Symmetric/Hermitian Positive Definite Linear
- LA_PPRFS
- Symmetric/Hermitian Positive Definite Linear
- LA_PPSV
- Linear Equations
| LA_PPSV
- LA_PPSVX
- Linear Equations
| LA_PPSVX
- LA_PPTRF
- Symmetric/Hermitian Positive Definite Linear
- LA_PPTRI
- Symmetric/Hermitian Positive Definite Linear
- LA_PPTRS
- Symmetric/Hermitian Positive Definite Linear
- la_precision.mod
- Data Types and Precision
| How to call an
| How to call an
| How to call an
| Example 1
| Example 2
- LA_PTCON
- Symmetric/Hermitian Positive Definite Linear
- LA_PTEQR
- Computational Routines for the
- LA_PTRFS
- Symmetric/Hermitian Positive Definite Linear
- LA_PTSV
- Linear Equations
| LA_PTSV
- LA_PTSVX
- Linear Equations
| LA_PTSVX
- LA_PTTRF
- Symmetric/Hermitian Positive Definite Linear
- LA_PTTRS
- Symmetric/Hermitian Positive Definite Linear
- LA_SBEV
- Singular Value Decomposition (SVD)
| LA_SBEV / LA_HBEV /
- LA_SBEVD
- Singular Value Decomposition (SVD)
| LA_SBEV / LA_HBEV /
- LA_SBEVX
- Singular Value Decomposition (SVD)
| LA_SBEVX / LA_HBEVX
- LA_SBGST
- Computational Routines for the
- LA_SBGV
- Generalized Singular Value Decomposition
| LA_SBGV / LA_SBGVD /
- LA_SBGVD
- Generalized Singular Value Decomposition
| LA_SBGV / LA_SBGVD /
- LA_SBGVX
- Generalized Singular Value Decomposition
| LA_SBGVX / LA_HBGVX
- LA_SBTRD
- Computational Routines for the
- LA_SPCON
- Symmetric Indefinite Linear Systems
- LA_SPEV
- Singular Value Decomposition (SVD)
| LA_SPEV / LA_HPEV /
- LA_SPEVD
- Singular Value Decomposition (SVD)
| LA_SPEV / LA_HPEV /
- LA_SPEVX
- Singular Value Decomposition (SVD)
| LA_SPEVX / LA_HPEVX
- LA_SPGST
- Computational Routines for the
- LA_SPGV
- Generalized Singular Value Decomposition
| LA_SPGV / LA_SPGVD /
- LA_SPGVD
- Generalized Singular Value Decomposition
| LA_SPGV / LA_SPGVD /
- LA_SPGVX
- Generalized Singular Value Decomposition
| LA_SPGVX / LA_HPGVX
- LA_SPRFS
- Symmetric Indefinite Linear Systems
- LA_SPSV
- Linear Equations
| LA_SPSV / LA_HPSV
- LA_SPSVX
- Linear Equations
| LA_SPSVX / LA_HPSVX
- LA_SPTRD
- Computational Routines for the
- LA_SPTRF
- Symmetric Indefinite Linear Systems
- LA_SPTRI
- Symmetric Indefinite Linear Systems
- LA_SPTRS
- Symmetric Indefinite Linear Systems
- LA_STEBZ
- Computational Routines for the
- LA_STEDC
- Computational Routines for the
- LA_STEGR
- Computational Routines for the
- LA_STEIN
- Computational Routines for the
- LA_STEQR
- Computational Routines for the
- LA_STERF
- Computational Routines for the
- LA_STEV
- Singular Value Decomposition (SVD)
| LA_STEV / LA_STEVD
- LA_STEVD
- Singular Value Decomposition (SVD)
| LA_STEV / LA_STEVD
- LA_STEVR
- Singular Value Decomposition (SVD)
| LA_STEVR
- LA_STEVX
- Singular Value Decomposition (SVD)
| LA_STEVX
- LA_SYCON
- Symmetric Indefinite Linear Systems
- LA_SYEV
- Singular Value Decomposition (SVD)
| Code for One Version
| LA_SYEV / LA_HEEV /
- LA_SYEVD
- Singular Value Decomposition (SVD)
| LA_SYEV / LA_HEEV /
- LA_SYEVR
- Singular Value Decomposition (SVD)
| LA_SYEVR / LA_HEEVR
- LA_SYEVX
- Singular Value Decomposition (SVD)
| LA_SYEVX / LA_HEEVX
- LA_SYGST
- Computational Routines for the
- LA_SYGV
- Generalized Singular Value Decomposition
| LA_SYGV /LA_SYGVD / LA_HEGV
- LA_SYGVD
- Generalized Singular Value Decomposition
| LA_SYGV /LA_SYGVD / LA_HEGV
- LA_SYGVX
- Generalized Singular Value Decomposition
| LA_SYGVX / LA_HEGVX
- LA_SYRFS
- Symmetric Indefinite Linear Systems
- LA_SYSV
- Linear Equations
| LA_SYSV / LA_HESV
- LA_SYSVX
- Linear Equations
| LA_SYSVX / LA_HESVX
- LA_SYTRD
- Computational Routines for the
- LA_SYTRF
- Symmetric Indefinite Linear Systems
- LA_SYTRI
- Symmetric Indefinite Linear Systems
- LA_SYTRS
- Symmetric Indefinite Linear Systems
- LA_TBCON
- Triangular Linear Systems
- LA_TBRFS
- Triangular Linear Systems
- LA_TBTRS
- Triangular Linear Systems
- LA_TGEVC
- Computational Routines for the
- LA_TGEXC
- Computational Routines for the
- LA_TGSEN
- Computational Routines for the
- LA_TGSJA
- Computational Routines for the
- LA_TGSNA
- Computational Routines for the
- LA_TGSYL
- Computational Routines for the
- LA_TPCON
- Triangular Linear Systems
- LA_TPRFS
- Triangular Linear Systems
- LA_TPTRI
- Triangular Linear Systems
- LA_TPTRS
- Triangular Linear Systems
- LA_TRCON
- Triangular Linear Systems
- LA_TREVC
- Computational Routines for the
- LA_TREXC
- Computational Routines for the
- LA_TRRFS
- Triangular Linear Systems
- LA_TRSEN
- Computational Routines for the
- LA_TRSNA
- Computational Routines for the
- LA_TRSYL
- Computational Routines for the
- LA_TRTRI
- Triangular Linear Systems
- LA_TRTRS
- Triangular Linear Systems
- LA_TZRZF
- Computational Routines for Orthogonal
- LA_UNGBR
- Computational Routines for the
- LA_UNGHR
- Computational Routines for the
| Computational Routines for the
- LA_UNGLQ
- Computational Routines for Orthogonal
- LA_UNGQL
- Computational Routines for Orthogonal
- LA_UNGQR
- Computational Routines for Orthogonal
- LA_UNGRQ
- Computational Routines for Orthogonal
- LA_UNGTR
- Computational Routines for the
- LA_UNMBR
- Computational Routines for the
- LA_UNMHR
- Computational Routines for the
- LA_UNMLQ
- Computational Routines for Orthogonal
- LA_UNMQL
- Computational Routines for Orthogonal
- LA_UNMQR
- Computational Routines for Orthogonal
- LA_UNMRQ
- Computational Routines for Orthogonal
- LA_UNMRZ
- Computational Routines for Orthogonal
- LA_UNMTR
- Computational Routines for the
- LA_UPGTR
- Computational Routines for the
- LA_UPMTR
- Computational Routines for the
- LAPACK
- Preface
| Problems that LAPACK95 can
| LAPACK
| Performance Issues
| Performance Tables
- home page
- LAPACK
- Installation Guide
- LAPACK
- library
- LAPACK95
- package
- LAPACK
- test suites
- LAPACK
- Users' Guide
- Symmetric Eigenproblems (SEP)
| Symmetric Eigenproblems (SEP)
| Singular Value Decomposition (SVD)
| Generalized Nonsymmetric Eigenproblems (GNEP)
- LAPACK95
- Preface
| LAPACK95
| Performance Tables
- commercial use of
- Commercial Use
- documentation
- Structure of the Documentation
- driver routines
- Driver Routines
- FAQ
- LAPACK95
- home page
- LAPACK95
- naming
- Design of the LAPACK95
- source code
- LAPACK95
- test suites
- LAPACK95
- leading diagonal blocks
- Computational Routines for the
- least squares solution
- Purpose
| Purpose
| Purpose
| Purpose
- libblas.a
- How to call an
| How to call an
| How to call an
- liblapack.a
- How to call an
| How to call an
| How to call an
| How to call an
- liblapack95.a
- How to call an
| How to call an
| How to call an
- linear equations
- Linear Equations
- linear least squares problem
- Problems that LAPACK95 can
| Linear Least Squares (LLS)
- equality-constrained
- Purpose
- generalized
- Generalized Linear Least Squares
- equality-constrained (LSE)
- Generalized Linear Least Squares
- regression model (GLM)
- Generalized Linear Least Squares
- weighted
- Generalized Linear Least Squares
- LINPACK
- Preface
- LLS (Linear Least Squares)
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
- LOGICAL FUNCTION SELECT
- Example 2 (from Program
- lower bidiagonal
- form
- Computational Routines for the
- matrix
- Computational Routines for the
- LQ factorization
- Computational Routines for Orthogonal
- LSE
- Generalized Linear Least Squares
| Generalized Linear Least Squares
- problem
- Purpose
- LU factorization
- Levels of Routines
| General Linear Systems
| General Linear Systems
| General Linear Systems
- machine
- constants returned by LA_LAMCH
- Machine Dependent Constants (Function
- dependencies (ILAENV)
- Incorporating Machine Dependencies
- make.inc
- LAPACK95
- matrices
- balancing
- Computational Routines for the
- bidiagonal
- lower
- Computational Routines for the
- upper
- Computational Routines for the
- complex
- unitary
- Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
- complex general
- band
- Purpose
| Purpose
- dense
- Purpose
| Purpose
- tridiagonal
- Purpose
| Purpose
- complex Hermitian
- Computational Routines for the
- band storage
- Computational Routines for the
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- indefinite
- Symmetric Indefinite Linear Systems
- indefinite, full storage
- Purpose
| Purpose
- indefinite, packed storage
- Purpose
| Purpose
| Symmetric Indefinite Linear Systems
- inverse
- Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- inverse, packed storage
- Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- packed storage
- Computational Routines for the
- positive definite
- Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
| Computational Routines for the
- positive definite, band storage
- Purpose
| Purpose
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Computational Routines for the
| Computational Routines for the
- positive definite, full storage
- Purpose
| Purpose
- positive definite, packed storage
- Purpose
| Purpose
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
| Computational Routines for the
- positive definite, tridiagonal
- LA_PTSV
| Purpose
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
- complex symmetric
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- indefinite
- Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
- indefinite, full storage
- Purpose
| Purpose
- indefinite, packed storage
- Purpose
| Purpose
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
- inverse
- Symmetric Indefinite Linear Systems
- inverse, packed storage
- Symmetric Indefinite Linear Systems
- effective rank
- Purpose
- full rank
- Purpose
- general
- inverse
- General Linear Systems
- orthogonal
- Computational Routines for Orthogonal
| Computational Routines for Orthogonal
| Computational Routines for Orthogonal
| Computational Routines for Orthogonal
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
- packed storage
- Computational Routines for the
- product
- Computational Routines for Orthogonal
- pencil
- Generalized Nonsymmetric Eigenproblems (GNEP)
- permutation
- Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
- quasi-triangular
- upper
- Computational Routines for the
| Computational Routines for the
- rank deficient
- Purpose
- real general
- band
- Purpose
| Purpose
- dense
- Purpose
| Purpose
- tridiagonal
- Purpose
| Purpose
- real orthogonal
- Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
- real symmetric
- Computational Routines for the
- band storage
- Computational Routines for the
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- block diagonal and
- Purpose
- indefinite
- Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
- indefinite, full storage
- Purpose
| Purpose
- indefinite, packed storage
- Purpose
| Purpose
| Symmetric Indefinite Linear Systems
| Symmetric Indefinite Linear Systems
- inverse
- Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- inverse, packed storage
- Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- packed storage
- Computational Routines for the
- positive definite
- Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Computational Routines for the
- positive definite, band storage
- Purpose
| Purpose
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Computational Routines for the
| Computational Routines for the
- positive definite, full storage
- Purpose
| Purpose
- positive definite, packed storage
- Purpose
| Purpose
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Computational Routines for the
- positive definite, tridiagonal
- LA_PTSV
| Purpose
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
| Symmetric/Hermitian Positive Definite Linear
- singular value problems
- complex unitary
- Purpose
- real orthogonal
- Purpose
- Sylvester equation
- Computational Routines for the
- transformation
- generalized singular value
- Purpose
- trapezoidal
- Computational Routines for the
- triangular
- inverse
- Triangular Linear Systems
- packed, inverse
- Triangular Linear Systems
- upper
- Computational Routines for the
- unit lower triangular(L)
- Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| LA_PTSV
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
- unitary
- Computational Routines for Orthogonal
| Computational Routines for Orthogonal
| Computational Routines for Orthogonal
| Computational Routines for Orthogonal
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
- packed storage
- Computational Routines for the
- product
- Computational Routines for Orthogonal
- upper
- Hessenberg
- Computational Routines for the
| Computational Routines for the
- trapezoidal
- Computational Routines for Orthogonal
- triangular (U)
- Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| LA_PTSV
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
- matrix pairs
- eigenvalues
- generalized nonsymmetric
- Purpose
| Purpose
- singular value
- generalized
- Purpose
- megaflops
- Performance Tables
- memory allocation
- Error Handling
- minimum norm
- least squares solution
- Linear Least Squares (LLS)
| Purpose
| Purpose
| Purpose
- solution
- Linear Least Squares (LLS)
| Example 2 (from Program
- mirror repositories of netlib
- Mirror Repositories of netlib
- MODULE
- F77_LAPACK
- How to call an
| How to call an
- F95_LAPACK
- How to call an
| How to call an
- LA_AUXMOD
- How to call an
- LA_PRECISION
- Data Types and Precision
| How to call an
| How to call an
- MODULE statement
- Data Types and Precision
- naming scheme
- Naming Scheme
- computational routine
- Naming Scheme
- driver routine
- Naming Scheme
- LAPACK95
- Design of the LAPACK95
- near-singularity
- Linear Equations
- NEP
- Nonsymmetric Eigenproblems (NEP)
- netlib
- LAPACK95
- mirror repositories
- Mirror Repositories of netlib
- non-negative diagonal elements
- Computational Routines for the
| Computational Routines for the
- nonsymmetric eigenproblem
- generalized
- Generalized Nonsymmetric Eigenproblems (GNEP)
- Nonsymmetric Eigenvalue Problem
- see NEP
- ONLY option
- Code for One Version
- operation counts for LAPACK
- Performance Tables
| Performance Tables
- optimal block size
- Performance Tables
- optional arguments
- LAPACK95
- OPTIONAL attribute
- Design of the LAPACK95
| Code for One Version
- orthogonal
- matrix
- Symmetric Eigenproblems (SEP)
- orthonormal
- basis
- Nonsymmetric Eigenproblems (NEP)
| Purpose
| Purpose
| Computational Routines for the
- columns
- Computational Routines for Orthogonal
| Computational Routines for Orthogonal
- rows
- Computational Routines for Orthogonal
| Computational Routines for Orthogonal
- overdetermined system
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
- packed
- form
- see packed storage
- storage
- Linear Equations
| Matrix Storage Schemes
- scheme
- Example 1
- partial pivoting
- with row interchanges
- General Linear Systems
| General Linear Systems
| General Linear Systems
- pencil
- see matrices
- performance
- Computers for which LAPACK95
| Computers for which LAPACK95
| LAPACK and the BLAS
| Machine Dependent Constants (Function
| BLAS
| BLAS
| Support
| Performance Issues
| Performance Tables
- pivot growth factor
- Linear Equations
| Example (from Program LA_GESVX_EXAMPLE)
- complex general
- band matrix
- Purpose
- dense matrix
- Purpose
- real general
- band matrix
- Purpose
- dense matrix
- Purpose
- poor performance
- Errors and Poor Performance
| Errors and Poor Performance
| Errors and Poor Performance
- positive definite
- Linear Equations
- precision
- Data Types and Precision
- QL factorization
- Computational Routines for Orthogonal
- QR factorization
- Example 2
| Computational Routines for Orthogonal
- generalized (GQR)
- Generalized Linear Least Squares
- with column pivoting
- Computational Routines for Orthogonal
- quasi-triangular matrix
- Computational Routines for the
| Computational Routines for the
- quotient singular value decomposition
- Generalized Singular Value Decomposition
- rank
- deficient of matrix
- Purpose
- of argument
- Design of the LAPACK95
- README
- LAPACK95
- reciprocal
- condition number
- Example (from Program LA_GESVX_EXAMPLE)
| Example (from Program LA_PPSVX_EXAMPLE)
| Example (from Program LA_PTSVX_EXAMPLE)
| Example (from Program LA_GGESX_EXAMPLE)
| Example (from Program LA_GGEVX_EXAMPLE)
- condition numbers
- Arguments
- pivot growth factor
- Example (from Program LA_GESVX_EXAMPLE)
- reduction
- to bidiagonal form
- Computational Routines for the
- to tridiagonal form
- Example 1 (from Program
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
- reflectors
- see elementary reflectors
- regression, generalized linear
- Generalized Linear Least Squares
- Relatively Robust Representation
- see RRR
- release_notes
- LAPACK
- reliability
- see test suites
- residual sum-of-squares
- Example (from Program LA_GGLSE_EXAMPLE)
- right
- eigenvectors
- Nonsymmetric Eigenproblems (NEP)
- singular vectors
- Example 2 (from Program
- row
- index
- Computational Routines for the
- interchanges
- Example 1
- partial pivoting
- General Linear Systems
| General Linear Systems
| General Linear Systems
- RQ factorization
- Computational Routines for Orthogonal
- generalized (GRQ)
- Generalized Linear Least Squares
- RRR
- driver
- Symmetric Eigenproblems (SEP)
- scaling
- Purpose
- Schur
- complex form
- Purpose
| Purpose
- decomposition
- see factorization
| see factorization
- factorization
- Nonsymmetric Eigenproblems (NEP)
| Nonsymmetric Eigenproblems (NEP)
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Purpose
| Computational Routines for the
| Computational Routines for the
- complex
- Nonsymmetric Eigenproblems (NEP)
- generalized
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Computational Routines for the
| Computational Routines for the
- form
- Computational Routines for the
- generalized
- complex form
- Purpose
| Purpose
| Purpose
| Purpose
- left vectors
- Purpose
| Purpose
| Purpose
| Purpose
- real form
- Purpose
| Purpose
| Purpose
| Purpose
- right vectors
- Purpose
| Purpose
| Purpose
| Purpose
- vectors
- Generalized Nonsymmetric Eigenproblems (GNEP)
| Purpose
| Purpose
| Purpose
| Purpose
- real form
- Purpose
| Purpose
- vectors
- Nonsymmetric Eigenproblems (NEP)
| Nonsymmetric Eigenproblems (NEP)
| Purpose
| Example 2 (from Program
| Purpose
| Computational Routines for the
- selected cluster of eigenvalues
- Computational Routines for the
- SEP
- Symmetric Eigenproblems (SEP)
- simple driver
- Naming Scheme
| Symmetric Eigenproblems (SEP)
| Singular Value Decomposition (SVD)
- single
- shift
- Computational Routines for the
- singular
- Generalized Nonsymmetric Eigenproblems (GNEP)
- vectors
- Singular Value Decomposition (SVD)
| Purpose
| Purpose
| Computational Routines for the
- compact form
- Computational Routines for the
- left
- Singular Value Decomposition (SVD)
| Purpose
- right
- Singular Value Decomposition (SVD)
| Purpose
| Purpose
| Example 2 (from Program
- singular value
- Singular Value Decomposition (SVD)
| Purpose
| Purpose
- bidiagonal factor
- Computational Routines for the
- decomposition
- Singular Value Decomposition (SVD)
| Purpose
| Purpose
- generalized
- Generalized Singular Value Decomposition
| Purpose
- greatest
- Arguments
- problems
- Problems that LAPACK95 can
- singular value decomposition
- Linear Least Squares (LLS)
- generalized
- Generalized Singular Value Decomposition
| Generalized Singular Value Decomposition
| Generalized Singular Value Decomposition
- generalized, special cases
- Generalized Singular Value Decomposition
- quotient
- Generalized Singular Value Decomposition
- SLAMCH
- LA_LAMCH Interfaces
- spectral factorization
- Symmetric Eigenproblems (SEP)
- split Cholesky factorization
- Computational Routines for the
- SRC (directory)
- LAPACK95
- stability
- Accuracy and Stability
- standard
- form
- Computational Routines for the
- packed form
- Computational Routines for the
- storage
- scheme
- Matrix Storage Schemes
- band
- Example 1
- packed
- Example 1
- subspaces
- deflating
- Generalized Nonsymmetric Eigenproblems (GNEP)
- invariant
- Generalized Nonsymmetric Eigenproblems (GNEP)
- SUNPERF
- Performance Tables
- support
- Support
| Support
- SVD
- see singular value decomposition
| Computational Routines for the
| Computational Routines for the
- Sylvester
- equation
- Computational Routines for the
- matrix equation
- Computational Routines for the
- symmetric
- Linear Equations
- eigenproblems (SEP)
- Symmetric Eigenproblems (SEP)
- matrices
- Matrix Storage Schemes
- Symmetric Eigenvalue Problem
- see SEP
- system of linear equations
- Problems that LAPACK95 can
- backward error
- General Linear Systems
| General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- band storage
- Symmetric/Hermitian Positive Definite Linear
- packed storage
- Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- triangular band
- Triangular Linear Systems
- triangular matrix
- Triangular Linear Systems
- triangular packed
- Triangular Linear Systems
- tridiagonal
- Symmetric/Hermitian Positive Definite Linear
- condition number
- General Linear Systems
- equilibration
- General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
- band storage
- Symmetric/Hermitian Positive Definite Linear
- packed storage
- Symmetric/Hermitian Positive Definite Linear
- error bounds
- General Linear Systems
| General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- band storage
- Symmetric/Hermitian Positive Definite Linear
- packed storage
- Symmetric/Hermitian Positive Definite Linear
| Symmetric Indefinite Linear Systems
- triangular band
- Triangular Linear Systems
- triangular matrix
- Triangular Linear Systems
- triangular packed
- Triangular Linear Systems
- tridiagonal
- Symmetric/Hermitian Positive Definite Linear
- scaling
- General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
- band storage
- Symmetric/Hermitian Positive Definite Linear
- packed storage
- Symmetric/Hermitian Positive Definite Linear
- solution
- General Linear Systems
| General Linear Systems
| General Linear Systems
| Symmetric/Hermitian Positive Definite Linear
- band storage
- Symmetric/Hermitian Positive Definite Linear
- packed storage
- Symmetric/Hermitian Positive Definite Linear
- symmetric indefinite
- Symmetric Indefinite Linear Systems
- symmetric indefinite, packed storage
- Symmetric Indefinite Linear Systems
- triangular band
- Triangular Linear Systems
- triangular matrix
- Triangular Linear Systems
- triangular packed
- Triangular Linear Systems
- tridiagonal
- Symmetric/Hermitian Positive Definite Linear
- test suites
- LAPACK95
| LAPACK
| Errors and Poor Performance
- TESTING (directory)
- LAPACK95
- TIMING (directory)
- LAPACK95
- transformation
- backward
- Computational Routines for the
| Computational Routines for the
- equivalence
- orthogonal
- Computational Routines for the
| Computational Routines for the
- unitary
- Computational Routines for the
| Computational Routines for the
- orthogonal
- Purpose
| Computational Routines for Orthogonal
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
- similarity
- orthogonal
- Computational Routines for the
- orthogonal, band storage
- Computational Routines for the
- orthogonal, packed storage
- Computational Routines for the
- unitary
- Computational Routines for the
- unitary, band storage
- Computational Routines for the
- unitary, packed storage
- Computational Routines for the
- unitary
- Purpose
| Computational Routines for Orthogonal
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
| Computational Routines for the
- trapezoidal matrices
- Computational Routines for the
- triangular
- factor
- Cholesky
- Example 2 (from Program
| Example 1 (from Program
| Example 2 (from Program
- matrices
- Matrix Storage Schemes
- tridiagonal
- form
- Levels of Routines
- matrices
- Matrix Storage Schemes
- troubleshooting
- Performance and Troubleshooting
- underdetermined system
- Linear Least Squares (LLS)
| Linear Least Squares (LLS)
- unitary
- matrix
- Symmetric Eigenproblems (SEP)
| Example 1 (from Program
- upper
- bidiagonal
- form
- Computational Routines for the
| Computational Routines for the
- matrix
- Computational Routines for the
- Hessenberg matrix
- Computational Routines for the
| Computational Routines for the
- trapezoidal matrix
- Computational Routines for Orthogonal
- triangular
- form
- Computational Routines for Orthogonal
- matrices
- Computational Routines for the
- USE
- F77_LAPACK
- How to call an
| Code for One Version
- F95_LAPACK
- How to call an
- LA_AUXMOD
- How to call an
| Code for One Version
- LA_PRECISION
- How to call an
| Code for One Version
- DP
- Data Types and Precision
- SP
- Data Types and Precision
- USE statement
- Data Types and Precision
| Data Types and Precision
- vendor supplied BLAS
- BLAS
- weighted linear least squares
- Purpose
- working precision (WP)
- Example 2
- zero-sized array
- Design of the LAPACK95
Susan Blackford
2001-08-19