next up previous contents index
Next: LA_STEV / LA_STEVD Up: Standard Symmetric Eigenvalue Problems Previous: Arguments   Contents   Index

Example 1 (from Program LA_SBEVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
The matrix $A$ is the same as in Example 2 for LA_SBEV.

The call:
CALL LA_SBEVX( AB, W, Z
=Z, VL=-4.0_wp, VU=100.0_wp, M=M, Q=Q )7.3

${\bf W, M}$ and Q on exit:

\begin{displaymath}
\begin{array}{cc} {\bf W} \\
\begin{array}{\vert l\vert} ...
... \\
\hline \end{array} \end{array} \hspace{0.50 cm} {\bf M}=3
\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf Q} \\
\begin{array}{\vert rrrrr\ver...
...} &
3.19993 \times 10^{-1} \\
\hline \end{array} \end{array}\end{displaymath}

The eigenvalues of $A$ in the range $[-4, 100]$ are:

\begin{displaymath}
\left( \begin{array}{l}
-3.71265 \\ \;\;\; 1.20058\\ \;\;\; 1.61449 \times 10^{1}
\end{array} \right).
\end{displaymath}

The unitary matrix $Q$ used in the reduction of $A$ to tridiagonal form is:

\begin{displaymath}
Q = \left(
\begin{array}{rrrrr}
1 &
0~~~~~~ &
0~~~~~~ ...
...imes 10^{-1} &
3.19993 \times 10^{-1}
\end{array} \right) .
\end{displaymath}



Susan Blackford 2001-08-19