next up previous contents index
Next: Symmetric Indefinite Linear Systems Up: Arguments Previous: Arguments   Contents   Index

Example (from Program LA_PTSVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.

Matrices $A$ and $B$ are the same as in Example for LA_PTSV.

The call:
CALL LA_PTSVX( D, E, B, X, FERR
=FERR, BERR=BERR, RCOND=RCOND )

${\bf FERR, BERR}$ and ${\bf RCOND}$ on exit:


\begin{displaymath}
\begin{array}{c} {\bf FERR} \\
\begin{array}{\vert ccc\ve...
...line
1.18462 \times 10^{-1} \\ \hline
\end{array} \end{array}\end{displaymath}

The forward and backward errors of the three solution vectors are:

\begin{displaymath}
\left( \begin{array}{ccc}
4.02525 \times 10^{-6} & 4.02525 ...
...ray}{ccc}
0 & 0 & 1.22266 \times 10^{-8}
\end{array} \right).
\end{displaymath}

The estimate of the reciprocal condition number of matrix $A$ is $ 1.18462 \times 10^{-1} $

The solution of the system $ A\,X = B $ is:

\begin{displaymath}
X = \left( \begin{array}{rrr}
1.00000 & 2.00000 & 3.00000 ...
...3.00000 \\
1.00000 & 2.00000 & 3.00000
\end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19