next up previous contents index
Next: LA_GGGLM Up: Generalized Linear Least Squares Previous: Arguments   Contents   Index

Example (from Program LA_GGLSE_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.


\begin{displaymath}
A = \left( \begin{array}{rrr}
-6 & 7 & 4 \\
4 & -7 & 5 \...
... cm}
d=\left(
\begin{array}{r}
2 \\
-1
\end{array} \right)
\end{displaymath}

Arrays ${\bf A}, {\bf B}, {\bf C}$, and ${\bf D}$ on entry:

\begin{displaymath}
\begin{array}{cc} {\bf A} \\
\begin{array}{\vert rrr\vert...
...rt r\vert} \hline
2 \\
-1 \\
\hline \end{array} \end{array}\end{displaymath}

The call:
CALL LA_GGLSE( A, B, C, D, X, INFO )

${\bf C}, {\bf X}$, and ${\bf INFO}$ on exit:

\begin{displaymath}
\begin{array}{c} {\bf C} \\
\begin{array}{\vert l\vert} \...
...ay}\hspace{1.00 cm}
\begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}

The solution vector $x$ and the residual sum-of-squares are:

\begin{displaymath}
x= \left(
\begin{array}{l}
\;\;\; 3.33333 \times 10^{-1} \\...
... \ \ \ \
\Vert c - Ax \Vert^2_2 = 12.12456. \hspace{0.50 cm} \end{displaymath}



Susan Blackford 2001-08-19