next up previous contents index
Next: LA_GGEV Up: Generalized Nonsymmetric Eigenvalue Problems Previous: Arguments   Contents   Index

Example (from Program LA_GGESX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
Matrices $A$ and $B$ are the same as in Example 1 for LA_GGES.
Logical function SELECT is the same as in Example 2 for LA_GGES.

The call:


    CALL LA_GGESX( A, B, ALPHAR, ALPHAI, BETA, SELECT=SELECT, & 

RCONDE=RCONDE, RCONDV=RCONDV )
RCONDE and RCONDV on exit:

\begin{displaymath}
\begin{array}{cc} {\bf RCONDE} \\
\begin{array}{\vert rr\...
...\hline
1.7792356 & 1.4924539 \\
\hline \end{array} \end{array}\end{displaymath}

The reciprocal condition numbers for the average of the eigenvalues are:

\begin{displaymath}\left( \begin{array}{rr} 4.361381 \times 10^{-1} &
4.196469 \times 10^{-1} \end{array} \right) \end{displaymath}

The reciprocal condition numbers for the deflating subspace are:

\begin{displaymath}\left( \begin{array}{rr} 1.77924 & 1.49245 \end{array} \right) \end{displaymath}



Susan Blackford 2001-08-19