next up previous contents index
Next: LA_GBSV Up: General Linear Systems Previous: Arguments   Contents   Index

Example (from Program LA_GESVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
$A$ and $B$ are the same as in Example 1 for LA_GESV.
The call:

 CALL LA_GESVX(A, B, X, FERR=FERR, BERR=BERR, & 

RCOND=RCOND, RPVGRW=RPVGRW )
FERR, BERR, RCOND and RPVGRW on exit:

\begin{displaymath}\begin{array}{c} \\ \begin{array}{c} {\bf FERR} \\
\begin{ar...
...9 \times 10^{-8} \\
\hline \end{array} \end{array} \end{array}\end{displaymath}


\begin{displaymath}\begin{array}{cc} {\bf RCOND} = 1.14296 \times 10^{-2} &
{\bf RPVGRW} = 1.12500 \end{array} \end{displaymath}

The forward and backward errors of the three solution vectors are:

\begin{displaymath}\begin{array}{c} \\ \left( \begin{array}{ccc}
4.66608 \times...
...-8} & 1.83399 \times 10^{-8}
\end{array} \right). \end{array} \end{displaymath}

The estimate of the reciprocal condition number of $A$ is $1.14296 \times 10^{-2}$.
The reciprocal pivot growth factor is 1.12500.
The solution of the system $ A\,X = B $ is:

\begin{displaymath}
X = \left( \begin{array}{rrr}
1.00000 & 2.00000 & 3.00000 ...
...3.00000 \\
1.00000 & 2.00000 & 3.00000
\end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19