next up previous contents index
Next: Examples Up: Generalized Symmetric Eigenvalue Problems Previous: Purpose   Contents   Index

Arguments

AP
(input/output) REAL or COMPLEX array, shape $(:)$ with $size({\bf AP}) = n(n+1)/2$, where $n$ is the order of $A$ and $B$.
On entry, the upper or lower triangle of matrix $A$ in packed storage. The elements are stored columnwise as follows:

\begin{displaymath}
\begin{array}{c\vert c\vert c}
A_{i,j} & i,j & {\bf UPLO} ...
... \leq i \leq n \end{array} & \mbox{ 'L'} \\ \hline
\end{array}\end{displaymath}

On exit, the contents of AP are destroyed.

BP
(input/output) REAL or COMPLEX array, shape $(:)$ and $size({\bf BP}) = size({\bf AP})$.
On entry, the upper or lower triangle of matrix $B$ in packed storage. The elements are stored columnwise as follows:

\begin{displaymath}
\begin{array}{c\vert c\vert c}
B_{i,j} & i,j & {\bf UPLO} ...
...j \leq i \leq n \end{array} & \mbox{'L'} \\ \hline
\end{array}\end{displaymath}

On exit, the triangular factor $U$ or $L$ of the Cholesky factorization $B = U^H\,U$ or $B = L\,L^H$, in the same storage format as $B$.

W
(output) REAL array, shape $(:)$ with $size$(W) $= n$.
The eigenvalues in ascending order.

ITYPE
Optional (input) INTEGER.
Specifies the problem type to be solved:

\begin{optionarg}
\item[{= 1:}] $A z = \lambda B z$ \item[{= 2:}] $A B z = \lambda z$ \item[{= 3:}] $B A z = \lambda z$ \end{optionarg}
Default value: 1.

UPLO
Optional (input) CHARACTER(LEN=1).

\begin{optionarg}
\item[{$ =$\ 'U':}] Upper triangles of $A$\ and $B$\ are stor...
...item[{$ =$\ 'L':}] Lower triangles of $A$\ and $B$\ are stored.
\end{optionarg}
Default value: 'U'.

Z
Optional (output) REAL or COMPLEX square array, shape $(:,:)$ with $size$(Z,1) $= n$.
The matrix $Z$ of eigenvectors, normalized as follows:

\begin{optionarg}
\item[{if ${\bf ITYPE} = 1$\ or $2$:}] $Z^H\,B\,Z = I$,
\item[{if ${\bf ITYPE} = 3$:}] $Z^H\,B^{-1}\,Z = I$.
\end{optionarg}

INFO
Optional (output) INTEGER.

\begin{infoarg}
\item[{$=$\ 0:}] successful exit.
\item[{$<$\ 0:}] if {\bf INF...
...d and
no eigenvalues or eigenvectors were computed.
\end{infoarg}\end{infoarg}
If INFO is not present and an error occurs, then the program is terminated with an error message.
References: [1] and [17,9,20].
next up previous contents index
Next: Examples Up: Generalized Symmetric Eigenvalue Problems Previous: Purpose   Contents   Index
Susan Blackford 2001-08-19