next up previous contents index
Next: Generalized Singular Value Problems Up: Examples Previous: Example 1 (from Program   Contents   Index

Example 2 (from Program LA_GESVD_EXAMPLE)

Matrix $A$ as in Example 1.

The call:
CALL LA_GESVD( A, S, VT
=VT, WW=WW, JOB='U', INFO=INFO )

${\bf S}$ on exit: as in Example 1.

A, VT, WW, and INFO on exit:

\begin{displaymath}
\begin{array}{c} {\bf A} \\
\begin{array}{\vert lllll\ver...
... & -9.80518 \times 10^{-1} \\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf VT} \\
\begin{array}{\vert lllll\ver...
...} & -1.04370 \times 10^{-1} \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf WW} \\
\begin{array}{\vert r\vert} ...
...y} \hspace{1.50 cm}
\begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}

The singular values of $A$ are the same as in Example 1.

The left singular vectors of $A$ are:

\begin{displaymath}\left( \begin{array}{lllll}
-7.40942 \times 10^{-1} & \;\;\; ...
... 10^{-1} & \;\;\; 2.71291 \times 10^{-1}
\end{array} \right). \end{displaymath}

The right singular vectors of $A$ are (columnwise):

\begin{displaymath}
\left(
\begin{array}{lllll}
-1.96044 \times 10^{-1} & -5.95...
...\times 10^{-2} & -9.80517 \times 10^{-1}
\end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19