next up previous contents index
Next: LA_SPGVX / LA_HPGVX Up: Examples Previous: Example 1 (from Program   Contents   Index

Example 2 (from Program LA_HPGV_EXAMPLE)

Matrices $A$ and $B$ as in Example 1.
Arrays ${\bf AP}$ and ${\bf BP}$ on entry:

\begin{displaymath}
\begin{array}{cc} {\bf AP} \\
\begin{array}{\vert ccccccc...
...) &
(2,-3) &
(-9,1)
\\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf AP\ continued} \\
\begin{array}{cc...
...7, 0) &
(-11, 0) &
(9, 0) \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf BP} \\
\begin{array}{\vert ccccccc...
...1,-1) &
(11,0) &
(1,2) \\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf BP\ continued} \\
\begin{array}{cc...
...(12,0) &
(-1,1) &
(11,0) \\
\hline \end{array} \end{array}\end{displaymath}

The call:
CALL LA_HPGV( AP, BP, W,
3, 'L', Z, INFO )

${\bf BP}$, ${\bf W}$, ${\bf Z}$, and ${\bf INFO}$ on exit:

\begin{displaymath}
\begin{array}{cc} {\bf BP} \\
\begin{array}{\vert ccc} \h...
...}, 9.48683 \times 10^{-1}) \\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf BP\ continued} \\
\begin{array}{ccc...
...-1}) &
(3.04959, 0.00000) \\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf BP\ continued} \\
\begin{array}{c@{...
..., -1.63956 \times 10^{-1}) \\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf BP\ continued} \\
\begin{array}{ccc...
..., -1.07330 \times 10^{-1}) \\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf BP\ continued} \\
\begin{array}{ccc...
...^{-1}) &
(2.80072, 0.00000) \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf W} \\
\begin{array}{\vert r\vert} \...
...80 \\ 111.573 \\ 391.493
\\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf Z} \\
\begin{array}{\vert ll} \hli...
...s 10^{-1}, \;\;\; 1.63311) \\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf Z} \\
\begin{array}{ll} \hline
(\;...
...\; 6.16168 \times 10^{-1}) \\
\hline \end{array} \end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf Z\ continued} \\
\begin{array}{l\v...
...457) \\
(-1.68730, -1.47214)\\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
{\bf INFO} = 0
\end{displaymath}

The eigenvalues of the problem $B A z = \lambda z$ are:


\begin{displaymath}
\left( \begin{array}{r}
-203.206 \\ -35.5916 \\ 1.73180 \\ 111.573 \\ 391.493
\end{array} \right).
\end{displaymath}

The eigenvectors are:


\begin{displaymath}
\left( \begin{array}{ll}
\;\;\; 2.42010 & -1.00862 \times ...
...\; 3.00437 \times 10^{-1} + 1.63311i \\
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left. \begin{array}{ll}
\;\;\; 2.60276 \times 10^{-1} & -...
...\times 10^{-2} + 6.16168 \times 10^{-1}i
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left.
\begin{array}{l}
-1.34162 \\
-1.11936 - 1.08115i ...
...26824 + 1.97457i \\
-1.68730 - 1.47214i
\end{array} \right) .
\end{displaymath}

The triangular factor $L$ from the Cholesky factorization of $B$ is:

\begin{displaymath}
L= \left(
\begin{array}{ll}
\;\;\: 3.16228 \\
-3.16228 \tim...
...7 \times 10^{-1} - 1.63956 \times 10^{-1}i
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left.
\begin{array}{lll}
\\
\\
\;\;\; 2.90532 \\
\;\;...
...57555 + 4.29493 \times 10^{-1}i & 2.80072
\end{array} \right).
\end{displaymath}


next up previous contents index
Next: LA_SPGVX / LA_HPGVX Up: Examples Previous: Example 1 (from Program   Contents   Index
Susan Blackford 2001-08-19