next up previous contents index
Next: Examples Up: Generalized Symmetric Eigenvalue Problems Previous: Purpose   Contents   Index

Arguments

AB
(input/output) REAL or COMPLEX array, shape $(:,:)$ with $size$(AB,1) $= ka+1$ and $size$(AB,2) $= n$, where $ka$ is the number of subdiagonals or superdiagonals in the band and $n$ is the order of $A$ and $B$.
On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') triangle of matrix $A$ in band storage. The $ka+1$ diagonals of $A$ are stored in the rows of AB so that the $j^{th}$ column of $A$ is stored in the $j^{th}$ column of ${\bf AB}$ as follows:

\begin{displaymath}
\begin{array}{c\vert c\vert c}
A_{i,j} & i,j & {\bf UPLO} ...
...1 \leq j \leq n \end{array} & \mbox{'L'} \\ \hline
\end{array}\end{displaymath}

On exit, the contents of AB are destroyed.

BB
(input/output) REAL or COMPLEX array, shape $(:,:)$ with $size$(BB,1) $= kb+1$ and $size$(BB,2) $= n$, where $kb$ is the number of subdiagonals or superdiagonals in the band of $B$.
On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') triangle of matrix $B$ in band storage. The $kb+1$ diagonals of $B$ are stored in the rows of BB so that the $j^{th}$ column of $B$ is stored in the $j^{th}$ column of ${\bf BB}$ as follows:

\begin{displaymath}
\begin{array}{c\vert c\vert c}
B_{i,j} & i,j & {\bf UPLO} ...
...1 \leq j \leq n \end{array} & \mbox{'L'} \\ \hline
\end{array}\end{displaymath}

On exit, the factor $S$ from the split Cholesky factorization $B = S^H\,S$.

W
(output) REAL array, shape $(:)$ with $size$(W) $= n$.
The eigenvalues in ascending order.

UPLO
Optional (input) CHARACTER(LEN=1).

\begin{optionarg}
\item[{$ =$\ 'U':}] Upper triangles of $A$\ and $B$\ are stor...
...item[{$ =$\ 'L':}] Lower triangles of $A$\ and $B$\ are stored.
\end{optionarg}
Default value: 'U'.

Z
Optional (output) REAL or COMPLEX square array, shape $(:,:)$ with $size$(Z,1) $= n$ .
The matrix $Z$ of eigenvectors, normalized so that $Z^H\,B\,Z = I$.

INFO
Optional (output) INTEGER.

\begin{infoarg}
\item[{$=$\ 0:}] successful exit.
\item[{$<$\ 0:}] if {\bf INF...
...d and
no eigenvalues or eigenvectors were computed.
\end{infoarg}\end{infoarg}
If INFO is not present and an error occurs, then the program is terminated with an error message.

References: [1] and [17,9,20].
next up previous contents index
Next: Examples Up: Generalized Symmetric Eigenvalue Problems Previous: Purpose   Contents   Index
Susan Blackford 2001-08-19