LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
sormrz.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine sormrz (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 SORMRZ

Function/Subroutine Documentation

subroutine sormrz ( character  SIDE,
character  TRANS,
integer  M,
integer  N,
integer  K,
integer  L,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( * )  TAU,
real, dimension( ldc, * )  C,
integer  LDC,
real, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

SORMRZ

Download SORMRZ + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 SORMRZ overwrites the general real M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'T':      Q**T * C       C * Q**T

 where Q is a real orthogonal matrix defined as the product of k
 elementary reflectors

       Q = H(1) H(2) . . . H(k)

 as returned by STZRZF. Q is of order M if SIDE = 'L' and of order N
 if SIDE = 'R'.
Parameters:
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
[in]TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
[in]M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
[in]L
          L is INTEGER
          The number of columns of the matrix A containing
          the meaningful part of the Householder reflectors.
          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
[in]A
          A is REAL array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          STZRZF in the last k rows of its array argument A.
          A is modified by the routine but restored on exit.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
[in]TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by STZRZF.
[in,out]C
          C is REAL array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
 

Definition at line 189 of file sormrz.f.

Here is the call graph for this function:

Here is the caller graph for this function: