LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zpbtf2.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zpbtf2 (UPLO, N, KD, AB, LDAB, INFO)
 ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).

Function/Subroutine Documentation

subroutine zpbtf2 ( character  UPLO,
integer  N,
integer  KD,
complex*16, dimension( ldab, * )  AB,
integer  LDAB,
integer  INFO 
)

ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (unblocked algorithm).

Download ZPBTF2 + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZPBTF2 computes the Cholesky factorization of a complex Hermitian
 positive definite band matrix A.

 The factorization has the form
    A = U**H * U ,  if UPLO = 'U', or
    A = L  * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix, U**H is the conjugate transpose
 of U, and L is lower triangular.

 This is the unblocked version of the algorithm, calling Level 2 BLAS.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
[in,out]AB
          AB is COMPLEX*16 array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

          On exit, if INFO = 0, the triangular factor U or L from the
          Cholesky factorization A = U**H *U or A = L*L**H of the band
          matrix A, in the same storage format as A.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, the leading minor of order k is not
               positive definite, and the factorization could not be
               completed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Further Details:
  The band storage scheme is illustrated by the following example, when
  N = 6, KD = 2, and UPLO = 'U':

  On entry:                       On exit:

      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66

  Similarly, if UPLO = 'L' the format of A is as follows:

  On entry:                       On exit:

     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *

  Array elements marked * are not used by the routine.

Definition at line 143 of file zpbtf2.f.

Here is the call graph for this function:

Here is the caller graph for this function: