LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
dspsv.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dspsv (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
  DSPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Function/Subroutine Documentation

subroutine dspsv ( character  UPLO,
integer  N,
integer  NRHS,
double precision, dimension( * )  AP,
integer, dimension( * )  IPIV,
double precision, dimension( ldb, * )  B,
integer  LDB,
integer  INFO 
)

DSPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Download DSPSV + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 DSPSV computes the solution to a real system of linear equations
    A * X = B,
 where A is an N-by-N symmetric matrix stored in packed format and X
 and B are N-by-NRHS matrices.

 The diagonal pivoting method is used to factor A as
    A = U * D * U**T,  if UPLO = 'U', or
    A = L * D * L**T,  if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, D is symmetric and block diagonal with 1-by-1
 and 2-by-2 diagonal blocks.  The factored form of A is then used to
 solve the system of equations A * X = B.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in,out]AP
          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.

          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
          a packed triangular matrix in the same storage format as A.
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D, as
          determined by DSPTRF.  If IPIV(k) > 0, then rows and columns
          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
          then rows and columns k-1 and -IPIV(k) were interchanged and
          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
          diagonal block.
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                has been completed, but the block diagonal matrix D is
                exactly singular, so the solution could not be
                computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':

  Two-dimensional storage of the symmetric matrix A:

     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = aji)
                 a44

  Packed storage of the upper triangle of A:

  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 163 of file dspsv.f.

Here is the call graph for this function:

Here is the caller graph for this function: