LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zhbtrd.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zhbtrd (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO)
 ZHBTRD

Function/Subroutine Documentation

subroutine zhbtrd ( character  VECT,
character  UPLO,
integer  N,
integer  KD,
complex*16, dimension( ldab, * )  AB,
integer  LDAB,
double precision, dimension( * )  D,
double precision, dimension( * )  E,
complex*16, dimension( ldq, * )  Q,
integer  LDQ,
complex*16, dimension( * )  WORK,
integer  INFO 
)

ZHBTRD

Download ZHBTRD + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZHBTRD reduces a complex Hermitian band matrix A to real symmetric
 tridiagonal form T by a unitary similarity transformation:
 Q**H * A * Q = T.
Parameters:
[in]VECT
          VECT is CHARACTER*1
          = 'N':  do not form Q;
          = 'V':  form Q;
          = 'U':  update a matrix X, by forming X*Q.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
[in,out]AB
          AB is COMPLEX*16 array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
          On exit, the diagonal elements of AB are overwritten by the
          diagonal elements of the tridiagonal matrix T; if KD > 0, the
          elements on the first superdiagonal (if UPLO = 'U') or the
          first subdiagonal (if UPLO = 'L') are overwritten by the
          off-diagonal elements of T; the rest of AB is overwritten by
          values generated during the reduction.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
[out]D
          D is DOUBLE PRECISION array, dimension (N)
          The diagonal elements of the tridiagonal matrix T.
[out]E
          E is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
[in,out]Q
          Q is COMPLEX*16 array, dimension (LDQ,N)
          On entry, if VECT = 'U', then Q must contain an N-by-N
          matrix X; if VECT = 'N' or 'V', then Q need not be set.

          On exit:
          if VECT = 'V', Q contains the N-by-N unitary matrix Q;
          if VECT = 'U', Q contains the product X*Q;
          if VECT = 'N', the array Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
[out]WORK
          WORK is COMPLEX*16 array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Modified by Linda Kaufman, Bell Labs.

Definition at line 163 of file zhbtrd.f.

Here is the call graph for this function:

Here is the caller graph for this function: