LAPACK
3.4.2
LAPACK: Linear Algebra PACKage
|
Go to the source code of this file.
Functions/Subroutines | |
subroutine | chpgv (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, RWORK, INFO) |
CHPGST |
subroutine chpgv | ( | integer | ITYPE, |
character | JOBZ, | ||
character | UPLO, | ||
integer | N, | ||
complex, dimension( * ) | AP, | ||
complex, dimension( * ) | BP, | ||
real, dimension( * ) | W, | ||
complex, dimension( ldz, * ) | Z, | ||
integer | LDZ, | ||
complex, dimension( * ) | WORK, | ||
real, dimension( * ) | RWORK, | ||
integer | INFO | ||
) |
CHPGST
Download CHPGV + dependencies [TGZ] [ZIP] [TXT]CHPGV computes all the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.
[in] | ITYPE | ITYPE is INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x |
[in] | JOBZ | JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. |
[in] | UPLO | UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. |
[in] | N | N is INTEGER The order of the matrices A and B. N >= 0. |
[in,out] | AP | AP is COMPLEX array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, the contents of AP are destroyed. |
[in,out] | BP | BP is COMPLEX array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix B, packed columnwise in a linear array. The j-th column of B is stored in the array BP as follows: if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. On exit, the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H, in the same storage format as B. |
[out] | W | W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. |
[out] | Z | Z is COMPLEX array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If JOBZ = 'N', then Z is not referenced. |
[in] | LDZ | LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). |
[out] | WORK | WORK is COMPLEX array, dimension (max(1, 2*N-1)) |
[out] | RWORK | RWORK is REAL array, dimension (max(1, 3*N-2)) |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: CPPTRF or CHPEV returned an error code: <= N: if INFO = i, CHPEV failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not convergeto zero; > N: if INFO = N + i, for 1 <= i <= n, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. |
Definition at line 165 of file chpgv.f.