LAPACK
3.4.2
LAPACK: Linear Algebra PACKage

Go to the source code of this file.
Functions/Subroutines  
DOUBLE PRECISION function  zlanhp (NORM, UPLO, N, AP, WORK) 
ZLANHP returns the value of the 1norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form. 
DOUBLE PRECISION function zlanhp  (  character  NORM, 
character  UPLO,  
integer  N,  
complex*16, dimension( * )  AP,  
double precision, dimension( * )  WORK  
) 
ZLANHP returns the value of the 1norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
Download ZLANHP + dependencies [TGZ] [ZIP] [TXT]ZLANHP returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex hermitian matrix A, supplied in packed form.
ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
[in]  NORM  NORM is CHARACTER*1 Specifies the value to be returned in ZLANHP as described above. 
[in]  UPLO  UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the hermitian matrix A is supplied. = 'U': Upper triangular part of A is supplied = 'L': Lower triangular part of A is supplied 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. When N = 0, ZLANHP is set to zero. 
[in]  AP  AP is COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangle of the hermitian matrix A, packed columnwise in a linear array. The jth column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j1)*(2nj)/2) = A(i,j) for j<=i<=n. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. 
[out]  WORK  WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, WORK is not referenced. 
Definition at line 118 of file zlanhp.f.