LAPACK
3.4.2
LAPACK: Linear Algebra PACKage
|
Go to the source code of this file.
Functions/Subroutines | |
subroutine | dsbgvx (JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO) |
DSBGST |
subroutine dsbgvx | ( | character | JOBZ, |
character | RANGE, | ||
character | UPLO, | ||
integer | N, | ||
integer | KA, | ||
integer | KB, | ||
double precision, dimension( ldab, * ) | AB, | ||
integer | LDAB, | ||
double precision, dimension( ldbb, * ) | BB, | ||
integer | LDBB, | ||
double precision, dimension( ldq, * ) | Q, | ||
integer | LDQ, | ||
double precision | VL, | ||
double precision | VU, | ||
integer | IL, | ||
integer | IU, | ||
double precision | ABSTOL, | ||
integer | M, | ||
double precision, dimension( * ) | W, | ||
double precision, dimension( ldz, * ) | Z, | ||
integer | LDZ, | ||
double precision, dimension( * ) | WORK, | ||
integer, dimension( * ) | IWORK, | ||
integer, dimension( * ) | IFAIL, | ||
integer | INFO | ||
) |
DSBGST
Download DSBGVX + dependencies [TGZ] [ZIP] [TXT]DSBGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.
[in] | JOBZ | JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. |
[in] | RANGE | RANGE is CHARACTER*1 = 'A': all eigenvalues will be found. = 'V': all eigenvalues in the half-open interval (VL,VU] will be found. = 'I': the IL-th through IU-th eigenvalues will be found. |
[in] | UPLO | UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. |
[in] | N | N is INTEGER The order of the matrices A and B. N >= 0. |
[in] | KA | KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. |
[in] | KB | KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. |
[in,out] | AB | AB is DOUBLE PRECISION array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. |
[in] | LDAB | LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1. |
[in,out] | BB | BB is DOUBLE PRECISION array, dimension (LDBB, N) On entry, the upper or lower triangle of the symmetric band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**T*S, as returned by DPBSTF. |
[in] | LDBB | LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1. |
[out] | Q | Q is DOUBLE PRECISION array, dimension (LDQ, N) If JOBZ = 'V', the n-by-n matrix used in the reduction of A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, and consequently C to tridiagonal form. If JOBZ = 'N', the array Q is not referenced. |
[in] | LDQ | LDQ is INTEGER The leading dimension of the array Q. If JOBZ = 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). |
[in] | VL | VL is DOUBLE PRECISION |
[in] | VU | VU is DOUBLE PRECISION If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'. |
[in] | IL | IL is INTEGER |
[in] | IU | IU is INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'. |
[in] | ABSTOL | ABSTOL is DOUBLE PRECISION The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*DLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*DLAMCH('S'). |
[out] | M | M is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. |
[out] | W | W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. |
[out] | Z | Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so Z**T*B*Z = I. If JOBZ = 'N', then Z is not referenced. |
[in] | LDZ | LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). |
[out] | WORK | WORK is DOUBLE PRECISION array, dimension (7*N) |
[out] | IWORK | IWORK is INTEGER array, dimension (5*N) |
[out] | IFAIL | IFAIL is INTEGER array, dimension (M) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvalues that failed to converge. If JOBZ = 'N', then IFAIL is not referenced. |
[out] | INFO | INFO is INTEGER = 0 : successful exit < 0 : if INFO = -i, the i-th argument had an illegal value <= N: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in IFAIL. > N : DPBSTF returned an error code; i.e., if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. |
Definition at line 284 of file dsbgvx.f.