LAPACK
3.4.2
LAPACK: Linear Algebra PACKage

Go to the source code of this file.
Functions/Subroutines  
subroutine  dsbgvx (JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO) 
DSBGST 
subroutine dsbgvx  (  character  JOBZ, 
character  RANGE,  
character  UPLO,  
integer  N,  
integer  KA,  
integer  KB,  
double precision, dimension( ldab, * )  AB,  
integer  LDAB,  
double precision, dimension( ldbb, * )  BB,  
integer  LDBB,  
double precision, dimension( ldq, * )  Q,  
integer  LDQ,  
double precision  VL,  
double precision  VU,  
integer  IL,  
integer  IU,  
double precision  ABSTOL,  
integer  M,  
double precision, dimension( * )  W,  
double precision, dimension( ldz, * )  Z,  
integer  LDZ,  
double precision, dimension( * )  WORK,  
integer, dimension( * )  IWORK,  
integer, dimension( * )  IFAIL,  
integer  INFO  
) 
DSBGST
Download DSBGVX + dependencies [TGZ] [ZIP] [TXT]DSBGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.
[in]  JOBZ  JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. 
[in]  RANGE  RANGE is CHARACTER*1 = 'A': all eigenvalues will be found. = 'V': all eigenvalues in the halfopen interval (VL,VU] will be found. = 'I': the ILth through IUth eigenvalues will be found. 
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. 
[in]  N  N is INTEGER The order of the matrices A and B. N >= 0. 
[in]  KA  KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. 
[in]  KB  KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. 
[in,out]  AB  AB is DOUBLE PRECISION array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array. The jth column of A is stored in the jth column of the array AB as follows: if UPLO = 'U', AB(ka+1+ij,j) = A(i,j) for max(1,jka)<=i<=j; if UPLO = 'L', AB(1+ij,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. 
[in]  LDAB  LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1. 
[in,out]  BB  BB is DOUBLE PRECISION array, dimension (LDBB, N) On entry, the upper or lower triangle of the symmetric band matrix B, stored in the first kb+1 rows of the array. The jth column of B is stored in the jth column of the array BB as follows: if UPLO = 'U', BB(ka+1+ij,j) = B(i,j) for max(1,jkb)<=i<=j; if UPLO = 'L', BB(1+ij,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**T*S, as returned by DPBSTF. 
[in]  LDBB  LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1. 
[out]  Q  Q is DOUBLE PRECISION array, dimension (LDQ, N) If JOBZ = 'V', the nbyn matrix used in the reduction of A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, and consequently C to tridiagonal form. If JOBZ = 'N', the array Q is not referenced. 
[in]  LDQ  LDQ is INTEGER The leading dimension of the array Q. If JOBZ = 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). 
[in]  VL  VL is DOUBLE PRECISION 
[in]  VU  VU is DOUBLE PRECISION If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'. 
[in]  IL  IL is INTEGER 
[in]  IU  IU is INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'. 
[in]  ABSTOL  ABSTOL is DOUBLE PRECISION The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( a,b ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*T will be used in its place, where T is the 1norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*DLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*DLAMCH('S'). 
[out]  M  M is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IUIL+1. 
[out]  W  W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. 
[out]  Z  Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the ith column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so Z**T*B*Z = I. If JOBZ = 'N', then Z is not referenced. 
[in]  LDZ  LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). 
[out]  WORK  WORK is DOUBLE PRECISION array, dimension (7*N) 
[out]  IWORK  IWORK is INTEGER array, dimension (5*N) 
[out]  IFAIL  IFAIL is INTEGER array, dimension (M) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvalues that failed to converge. If JOBZ = 'N', then IFAIL is not referenced. 
[out]  INFO  INFO is INTEGER = 0 : successful exit < 0 : if INFO = i, the ith argument had an illegal value <= N: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in IFAIL. > N : DPBSTF returned an error code; i.e., if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. 
Definition at line 284 of file dsbgvx.f.