LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
sgglse.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine sgglse (M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO)
  SGGLSE solves overdetermined or underdetermined systems for OTHER matrices

Function/Subroutine Documentation

subroutine sgglse ( integer  M,
integer  N,
integer  P,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( ldb, * )  B,
integer  LDB,
real, dimension( * )  C,
real, dimension( * )  D,
real, dimension( * )  X,
real, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

SGGLSE solves overdetermined or underdetermined systems for OTHER matrices

Download SGGLSE + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 SGGLSE solves the linear equality-constrained least squares (LSE)
 problem:

         minimize || c - A*x ||_2   subject to   B*x = d

 where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
 M-vector, and d is a given P-vector. It is assumed that
 P <= N <= M+P, and

          rank(B) = P and  rank( (A) ) = N.
                               ( (B) )

 These conditions ensure that the LSE problem has a unique solution,
 which is obtained using a generalized RQ factorization of the
 matrices (B, A) given by

    B = (0 R)*Q,   A = Z*T*Q.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B. N >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B. 0 <= P <= N <= M+P.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(M,N)-by-N upper trapezoidal matrix T.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in,out]B
          B is REAL array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
          contains the P-by-P upper triangular matrix R.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
[in,out]C
          C is REAL array, dimension (M)
          On entry, C contains the right hand side vector for the
          least squares part of the LSE problem.
          On exit, the residual sum of squares for the solution
          is given by the sum of squares of elements N-P+1 to M of
          vector C.
[in,out]D
          D is REAL array, dimension (P)
          On entry, D contains the right hand side vector for the
          constrained equation.
          On exit, D is destroyed.
[out]X
          X is REAL array, dimension (N)
          On exit, X is the solution of the LSE problem.
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,M+N+P).
          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
          where NB is an upper bound for the optimal blocksizes for
          SGEQRF, SGERQF, SORMQR and SORMRQ.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the upper triangular factor R associated with B in the
                generalized RQ factorization of the pair (B, A) is
                singular, so that rank(B) < P; the least squares
                solution could not be computed.
          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
                T associated with A in the generalized RQ factorization
                of the pair (B, A) is singular, so that
                rank( (A) ) < N; the least squares solution could not
                    ( (B) )
                be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 180 of file sgglse.f.

Here is the call graph for this function:

Here is the caller graph for this function: