LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
ztzrqf.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine ztzrqf (M, N, A, LDA, TAU, INFO)
 ZTZRQF

Function/Subroutine Documentation

subroutine ztzrqf ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
integer  INFO 
)

ZTZRQF

Download ZTZRQF + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 This routine is deprecated and has been replaced by routine ZTZRZF.

 ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
 to upper triangular form by means of unitary transformations.

 The upper trapezoidal matrix A is factored as

    A = ( R  0 ) * Z,

 where Z is an N-by-N unitary matrix and R is an M-by-M upper
 triangular matrix.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the leading M-by-N upper trapezoidal part of the
          array A must contain the matrix to be factorized.
          On exit, the leading M-by-M upper triangular part of A
          contains the upper triangular matrix R, and elements M+1 to
          N of the first M rows of A, with the array TAU, represent the
          unitary matrix Z as a product of M elementary reflectors.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]TAU
          TAU is COMPLEX*16 array, dimension (M)
          The scalar factors of the elementary reflectors.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  The  factorization is obtained by Householder's method.  The kth
  transformation matrix, Z( k ), whose conjugate transpose is used to
  introduce zeros into the (m - k + 1)th row of A, is given in the form

     Z( k ) = ( I     0   ),
              ( 0  T( k ) )

  where

     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
                                                   (   0    )
                                                   ( z( k ) )

  tau is a scalar and z( k ) is an ( n - m ) element vector.
  tau and z( k ) are chosen to annihilate the elements of the kth row
  of X.

  The scalar tau is returned in the kth element of TAU and the vector
  u( k ) in the kth row of A, such that the elements of z( k ) are
  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
  the upper triangular part of A.

  Z is given by

     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).

Definition at line 139 of file ztzrqf.f.

Here is the call graph for this function:

Here is the caller graph for this function: