LAPACK  3.4.2 LAPACK: Linear Algebra PACKage
ztzrqf.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine ztzrqf (M, N, A, LDA, TAU, INFO)
ZTZRQF

## Function/Subroutine Documentation

 subroutine ztzrqf ( integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) TAU, integer INFO )

ZTZRQF

Purpose:
``` This routine is deprecated and has been replaced by routine ZTZRZF.

ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
to upper triangular form by means of unitary transformations.

The upper trapezoidal matrix A is factored as

A = ( R  0 ) * Z,

where Z is an N-by-N unitary matrix and R is an M-by-M upper
triangular matrix.```
Parameters:
 [in] M ``` M is INTEGER The number of rows of the matrix A. M >= 0.``` [in] N ``` N is INTEGER The number of columns of the matrix A. N >= M.``` [in,out] A ``` A is COMPLEX*16 array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the unitary matrix Z as a product of M elementary reflectors.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).``` [out] TAU ``` TAU is COMPLEX*16 array, dimension (M) The scalar factors of the elementary reflectors.``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value```
Date:
November 2011
Further Details:
```  The  factorization is obtained by Householder's method.  The kth
transformation matrix, Z( k ), whose conjugate transpose is used to
introduce zeros into the (m - k + 1)th row of A, is given in the form

Z( k ) = ( I     0   ),
( 0  T( k ) )

where

T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
(   0    )
( z( k ) )

tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.

The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.

Z is given by

Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).```

Definition at line 139 of file ztzrqf.f.

Here is the call graph for this function:

Here is the caller graph for this function: