LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
dlag2s.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dlag2s (M, N, A, LDA, SA, LDSA, INFO)
 DLAG2S converts a double precision matrix to a single precision matrix.

Function/Subroutine Documentation

subroutine dlag2s ( integer  M,
integer  N,
double precision, dimension( lda, * )  A,
integer  LDA,
real, dimension( ldsa, * )  SA,
integer  LDSA,
integer  INFO 
)

DLAG2S converts a double precision matrix to a single precision matrix.

Download DLAG2S + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 DLAG2S converts a DOUBLE PRECISION matrix, SA, to a SINGLE
 PRECISION matrix, A.

 RMAX is the overflow for the SINGLE PRECISION arithmetic
 DLAG2S checks that all the entries of A are between -RMAX and
 RMAX. If not the convertion is aborted and a flag is raised.

 This is an auxiliary routine so there is no argument checking.
Parameters:
[in]M
          M is INTEGER
          The number of lines of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N coefficient matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]SA
          SA is REAL array, dimension (LDSA,N)
          On exit, if INFO=0, the M-by-N coefficient matrix SA; if
          INFO>0, the content of SA is unspecified.
[in]LDSA
          LDSA is INTEGER
          The leading dimension of the array SA.  LDSA >= max(1,M).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          = 1:  an entry of the matrix A is greater than the SINGLE
                PRECISION overflow threshold, in this case, the content
                of SA in exit is unspecified.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012

Definition at line 109 of file dlag2s.f.

Here is the call graph for this function:

Here is the caller graph for this function: