LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zlarfb.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zlarfb (SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
 ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.

Function/Subroutine Documentation

subroutine zlarfb ( character  SIDE,
character  TRANS,
character  DIRECT,
character  STOREV,
integer  M,
integer  N,
integer  K,
complex*16, dimension( ldv, * )  V,
integer  LDV,
complex*16, dimension( ldt, * )  T,
integer  LDT,
complex*16, dimension( ldc, * )  C,
integer  LDC,
complex*16, dimension( ldwork, * )  WORK,
integer  LDWORK 
)

ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.

Download ZLARFB + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZLARFB applies a complex block reflector H or its transpose H**H to a
 complex M-by-N matrix C, from either the left or the right.
Parameters:
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H**H from the Left
          = 'R': apply H or H**H from the Right
[in]TRANS
          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'C': apply H**H (Conjugate transpose)
[in]DIRECT
          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)
[in]STOREV
          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columnwise
          = 'R': Rowwise
[in]M
          M is INTEGER
          The number of rows of the matrix C.
[in]N
          N is INTEGER
          The number of columns of the matrix C.
[in]K
          K is INTEGER
          The order of the matrix T (= the number of elementary
          reflectors whose product defines the block reflector).
[in]V
          V is COMPLEX*16 array, dimension
                                (LDV,K) if STOREV = 'C'
                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
          See Further Details.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
          if STOREV = 'R', LDV >= K.
[in]T
          T is COMPLEX*16 array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= K.
[in,out]C
          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
[out]WORK
          WORK is COMPLEX*16 array, dimension (LDWORK,K)
[in]LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= max(1,N);
          if SIDE = 'R', LDWORK >= max(1,M).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Further Details:
  The shape of the matrix V and the storage of the vectors which define
  the H(i) is best illustrated by the following example with n = 5 and
  k = 3. The elements equal to 1 are not stored; the corresponding
  array elements are modified but restored on exit. The rest of the
  array is not used.

  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':

               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
                   ( v1  1    )                     (     1 v2 v2 v2 )
                   ( v1 v2  1 )                     (        1 v3 v3 )
                   ( v1 v2 v3 )
                   ( v1 v2 v3 )

  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':

               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
                   (     1 v3 )
                   (        1 )

Definition at line 195 of file zlarfb.f.

Here is the call graph for this function:

Here is the caller graph for this function: