LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zhegst.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zhegst (ITYPE, UPLO, N, A, LDA, B, LDB, INFO)
 ZHEGST

Function/Subroutine Documentation

subroutine zhegst ( integer  ITYPE,
character  UPLO,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer  INFO 
)

ZHEGST

Download ZHEGST + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZHEGST reduces a complex Hermitian-definite generalized
 eigenproblem to standard form.

 If ITYPE = 1, the problem is A*x = lambda*B*x,
 and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)

 If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.

 B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
Parameters:
[in]ITYPE
          ITYPE is INTEGER
          = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
          = 2 or 3: compute U*A*U**H or L**H*A*L.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored and B is factored as
                  U**H*U;
          = 'L':  Lower triangle of A is stored and B is factored as
                  L*L**H.
[in]N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, if INFO = 0, the transformed matrix, stored in the
          same format as A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,N)
          The triangular factor from the Cholesky factorization of B,
          as returned by ZPOTRF.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012

Definition at line 128 of file zhegst.f.

Here is the call graph for this function:

Here is the caller graph for this function: