LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zggsvd.f
Go to the documentation of this file.
1 *> \brief <b> ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZGGSVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
22 * LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
23 * RWORK, IWORK, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER JOBQ, JOBU, JOBV
27 * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
28 * ..
29 * .. Array Arguments ..
30 * INTEGER IWORK( * )
31 * DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
32 * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
33 * $ U( LDU, * ), V( LDV, * ), WORK( * )
34 * ..
35 *
36 *
37 *> \par Purpose:
38 * =============
39 *>
40 *> \verbatim
41 *>
42 *> ZGGSVD computes the generalized singular value decomposition (GSVD)
43 *> of an M-by-N complex matrix A and P-by-N complex matrix B:
44 *>
45 *> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
46 *>
47 *> where U, V and Q are unitary matrices.
48 *> Let K+L = the effective numerical rank of the
49 *> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
50 *> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
51 *> matrices and of the following structures, respectively:
52 *>
53 *> If M-K-L >= 0,
54 *>
55 *> K L
56 *> D1 = K ( I 0 )
57 *> L ( 0 C )
58 *> M-K-L ( 0 0 )
59 *>
60 *> K L
61 *> D2 = L ( 0 S )
62 *> P-L ( 0 0 )
63 *>
64 *> N-K-L K L
65 *> ( 0 R ) = K ( 0 R11 R12 )
66 *> L ( 0 0 R22 )
67 *> where
68 *>
69 *> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
70 *> S = diag( BETA(K+1), ... , BETA(K+L) ),
71 *> C**2 + S**2 = I.
72 *>
73 *> R is stored in A(1:K+L,N-K-L+1:N) on exit.
74 *>
75 *> If M-K-L < 0,
76 *>
77 *> K M-K K+L-M
78 *> D1 = K ( I 0 0 )
79 *> M-K ( 0 C 0 )
80 *>
81 *> K M-K K+L-M
82 *> D2 = M-K ( 0 S 0 )
83 *> K+L-M ( 0 0 I )
84 *> P-L ( 0 0 0 )
85 *>
86 *> N-K-L K M-K K+L-M
87 *> ( 0 R ) = K ( 0 R11 R12 R13 )
88 *> M-K ( 0 0 R22 R23 )
89 *> K+L-M ( 0 0 0 R33 )
90 *>
91 *> where
92 *>
93 *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
94 *> S = diag( BETA(K+1), ... , BETA(M) ),
95 *> C**2 + S**2 = I.
96 *>
97 *> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
98 *> ( 0 R22 R23 )
99 *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
100 *>
101 *> The routine computes C, S, R, and optionally the unitary
102 *> transformation matrices U, V and Q.
103 *>
104 *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
105 *> A and B implicitly gives the SVD of A*inv(B):
106 *> A*inv(B) = U*(D1*inv(D2))*V**H.
107 *> If ( A**H,B**H)**H has orthnormal columns, then the GSVD of A and B is also
108 *> equal to the CS decomposition of A and B. Furthermore, the GSVD can
109 *> be used to derive the solution of the eigenvalue problem:
110 *> A**H*A x = lambda* B**H*B x.
111 *> In some literature, the GSVD of A and B is presented in the form
112 *> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
113 *> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
114 *> ``diagonal''. The former GSVD form can be converted to the latter
115 *> form by taking the nonsingular matrix X as
116 *>
117 *> X = Q*( I 0 )
118 *> ( 0 inv(R) )
119 *> \endverbatim
120 *
121 * Arguments:
122 * ==========
123 *
124 *> \param[in] JOBU
125 *> \verbatim
126 *> JOBU is CHARACTER*1
127 *> = 'U': Unitary matrix U is computed;
128 *> = 'N': U is not computed.
129 *> \endverbatim
130 *>
131 *> \param[in] JOBV
132 *> \verbatim
133 *> JOBV is CHARACTER*1
134 *> = 'V': Unitary matrix V is computed;
135 *> = 'N': V is not computed.
136 *> \endverbatim
137 *>
138 *> \param[in] JOBQ
139 *> \verbatim
140 *> JOBQ is CHARACTER*1
141 *> = 'Q': Unitary matrix Q is computed;
142 *> = 'N': Q is not computed.
143 *> \endverbatim
144 *>
145 *> \param[in] M
146 *> \verbatim
147 *> M is INTEGER
148 *> The number of rows of the matrix A. M >= 0.
149 *> \endverbatim
150 *>
151 *> \param[in] N
152 *> \verbatim
153 *> N is INTEGER
154 *> The number of columns of the matrices A and B. N >= 0.
155 *> \endverbatim
156 *>
157 *> \param[in] P
158 *> \verbatim
159 *> P is INTEGER
160 *> The number of rows of the matrix B. P >= 0.
161 *> \endverbatim
162 *>
163 *> \param[out] K
164 *> \verbatim
165 *> K is INTEGER
166 *> \endverbatim
167 *>
168 *> \param[out] L
169 *> \verbatim
170 *> L is INTEGER
171 *>
172 *> On exit, K and L specify the dimension of the subblocks
173 *> described in Purpose.
174 *> K + L = effective numerical rank of (A**H,B**H)**H.
175 *> \endverbatim
176 *>
177 *> \param[in,out] A
178 *> \verbatim
179 *> A is COMPLEX*16 array, dimension (LDA,N)
180 *> On entry, the M-by-N matrix A.
181 *> On exit, A contains the triangular matrix R, or part of R.
182 *> See Purpose for details.
183 *> \endverbatim
184 *>
185 *> \param[in] LDA
186 *> \verbatim
187 *> LDA is INTEGER
188 *> The leading dimension of the array A. LDA >= max(1,M).
189 *> \endverbatim
190 *>
191 *> \param[in,out] B
192 *> \verbatim
193 *> B is COMPLEX*16 array, dimension (LDB,N)
194 *> On entry, the P-by-N matrix B.
195 *> On exit, B contains part of the triangular matrix R if
196 *> M-K-L < 0. See Purpose for details.
197 *> \endverbatim
198 *>
199 *> \param[in] LDB
200 *> \verbatim
201 *> LDB is INTEGER
202 *> The leading dimension of the array B. LDB >= max(1,P).
203 *> \endverbatim
204 *>
205 *> \param[out] ALPHA
206 *> \verbatim
207 *> ALPHA is DOUBLE PRECISION array, dimension (N)
208 *> \endverbatim
209 *>
210 *> \param[out] BETA
211 *> \verbatim
212 *> BETA is DOUBLE PRECISION array, dimension (N)
213 *>
214 *> On exit, ALPHA and BETA contain the generalized singular
215 *> value pairs of A and B;
216 *> ALPHA(1:K) = 1,
217 *> BETA(1:K) = 0,
218 *> and if M-K-L >= 0,
219 *> ALPHA(K+1:K+L) = C,
220 *> BETA(K+1:K+L) = S,
221 *> or if M-K-L < 0,
222 *> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
223 *> BETA(K+1:M) =S, BETA(M+1:K+L) =1
224 *> and
225 *> ALPHA(K+L+1:N) = 0
226 *> BETA(K+L+1:N) = 0
227 *> \endverbatim
228 *>
229 *> \param[out] U
230 *> \verbatim
231 *> U is COMPLEX*16 array, dimension (LDU,M)
232 *> If JOBU = 'U', U contains the M-by-M unitary matrix U.
233 *> If JOBU = 'N', U is not referenced.
234 *> \endverbatim
235 *>
236 *> \param[in] LDU
237 *> \verbatim
238 *> LDU is INTEGER
239 *> The leading dimension of the array U. LDU >= max(1,M) if
240 *> JOBU = 'U'; LDU >= 1 otherwise.
241 *> \endverbatim
242 *>
243 *> \param[out] V
244 *> \verbatim
245 *> V is COMPLEX*16 array, dimension (LDV,P)
246 *> If JOBV = 'V', V contains the P-by-P unitary matrix V.
247 *> If JOBV = 'N', V is not referenced.
248 *> \endverbatim
249 *>
250 *> \param[in] LDV
251 *> \verbatim
252 *> LDV is INTEGER
253 *> The leading dimension of the array V. LDV >= max(1,P) if
254 *> JOBV = 'V'; LDV >= 1 otherwise.
255 *> \endverbatim
256 *>
257 *> \param[out] Q
258 *> \verbatim
259 *> Q is COMPLEX*16 array, dimension (LDQ,N)
260 *> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
261 *> If JOBQ = 'N', Q is not referenced.
262 *> \endverbatim
263 *>
264 *> \param[in] LDQ
265 *> \verbatim
266 *> LDQ is INTEGER
267 *> The leading dimension of the array Q. LDQ >= max(1,N) if
268 *> JOBQ = 'Q'; LDQ >= 1 otherwise.
269 *> \endverbatim
270 *>
271 *> \param[out] WORK
272 *> \verbatim
273 *> WORK is COMPLEX*16 array, dimension (max(3*N,M,P)+N)
274 *> \endverbatim
275 *>
276 *> \param[out] RWORK
277 *> \verbatim
278 *> RWORK is DOUBLE PRECISION array, dimension (2*N)
279 *> \endverbatim
280 *>
281 *> \param[out] IWORK
282 *> \verbatim
283 *> IWORK is INTEGER array, dimension (N)
284 *> On exit, IWORK stores the sorting information. More
285 *> precisely, the following loop will sort ALPHA
286 *> for I = K+1, min(M,K+L)
287 *> swap ALPHA(I) and ALPHA(IWORK(I))
288 *> endfor
289 *> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
290 *> \endverbatim
291 *>
292 *> \param[out] INFO
293 *> \verbatim
294 *> INFO is INTEGER
295 *> = 0: successful exit.
296 *> < 0: if INFO = -i, the i-th argument had an illegal value.
297 *> > 0: if INFO = 1, the Jacobi-type procedure failed to
298 *> converge. For further details, see subroutine ZTGSJA.
299 *> \endverbatim
300 *
301 *> \par Internal Parameters:
302 * =========================
303 *>
304 *> \verbatim
305 *> TOLA DOUBLE PRECISION
306 *> TOLB DOUBLE PRECISION
307 *> TOLA and TOLB are the thresholds to determine the effective
308 *> rank of (A**H,B**H)**H. Generally, they are set to
309 *> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
310 *> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
311 *> The size of TOLA and TOLB may affect the size of backward
312 *> errors of the decomposition.
313 *> \endverbatim
314 *
315 * Authors:
316 * ========
317 *
318 *> \author Univ. of Tennessee
319 *> \author Univ. of California Berkeley
320 *> \author Univ. of Colorado Denver
321 *> \author NAG Ltd.
322 *
323 *> \date November 2011
324 *
325 *> \ingroup complex16OTHERsing
326 *
327 *> \par Contributors:
328 * ==================
329 *>
330 *> Ming Gu and Huan Ren, Computer Science Division, University of
331 *> California at Berkeley, USA
332 *>
333 * =====================================================================
334  SUBROUTINE zggsvd( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
335  $ ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work,
336  $ rwork, iwork, info )
337 *
338 * -- LAPACK driver routine (version 3.4.0) --
339 * -- LAPACK is a software package provided by Univ. of Tennessee, --
340 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
341 * November 2011
342 *
343 * .. Scalar Arguments ..
344  CHARACTER jobq, jobu, jobv
345  INTEGER info, k, l, lda, ldb, ldq, ldu, ldv, m, n, p
346 * ..
347 * .. Array Arguments ..
348  INTEGER iwork( * )
349  DOUBLE PRECISION alpha( * ), beta( * ), rwork( * )
350  COMPLEX*16 a( lda, * ), b( ldb, * ), q( ldq, * ),
351  $ u( ldu, * ), v( ldv, * ), work( * )
352 * ..
353 *
354 * =====================================================================
355 *
356 * .. Local Scalars ..
357  LOGICAL wantq, wantu, wantv
358  INTEGER i, ibnd, isub, j, ncycle
359  DOUBLE PRECISION anorm, bnorm, smax, temp, tola, tolb, ulp, unfl
360 * ..
361 * .. External Functions ..
362  LOGICAL lsame
363  DOUBLE PRECISION dlamch, zlange
364  EXTERNAL lsame, dlamch, zlange
365 * ..
366 * .. External Subroutines ..
367  EXTERNAL dcopy, xerbla, zggsvp, ztgsja
368 * ..
369 * .. Intrinsic Functions ..
370  INTRINSIC max, min
371 * ..
372 * .. Executable Statements ..
373 *
374 * Decode and test the input parameters
375 *
376  wantu = lsame( jobu, 'U' )
377  wantv = lsame( jobv, 'V' )
378  wantq = lsame( jobq, 'Q' )
379 *
380  info = 0
381  IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
382  info = -1
383  ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
384  info = -2
385  ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
386  info = -3
387  ELSE IF( m.LT.0 ) THEN
388  info = -4
389  ELSE IF( n.LT.0 ) THEN
390  info = -5
391  ELSE IF( p.LT.0 ) THEN
392  info = -6
393  ELSE IF( lda.LT.max( 1, m ) ) THEN
394  info = -10
395  ELSE IF( ldb.LT.max( 1, p ) ) THEN
396  info = -12
397  ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
398  info = -16
399  ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
400  info = -18
401  ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
402  info = -20
403  END IF
404  IF( info.NE.0 ) THEN
405  CALL xerbla( 'ZGGSVD', -info )
406  return
407  END IF
408 *
409 * Compute the Frobenius norm of matrices A and B
410 *
411  anorm = zlange( '1', m, n, a, lda, rwork )
412  bnorm = zlange( '1', p, n, b, ldb, rwork )
413 *
414 * Get machine precision and set up threshold for determining
415 * the effective numerical rank of the matrices A and B.
416 *
417  ulp = dlamch( 'Precision' )
418  unfl = dlamch( 'Safe Minimum' )
419  tola = max( m, n )*max( anorm, unfl )*ulp
420  tolb = max( p, n )*max( bnorm, unfl )*ulp
421 *
422  CALL zggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
423  $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
424  $ work, work( n+1 ), info )
425 *
426 * Compute the GSVD of two upper "triangular" matrices
427 *
428  CALL ztgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
429  $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
430  $ work, ncycle, info )
431 *
432 * Sort the singular values and store the pivot indices in IWORK
433 * Copy ALPHA to RWORK, then sort ALPHA in RWORK
434 *
435  CALL dcopy( n, alpha, 1, rwork, 1 )
436  ibnd = min( l, m-k )
437  DO 20 i = 1, ibnd
438 *
439 * Scan for largest ALPHA(K+I)
440 *
441  isub = i
442  smax = rwork( k+i )
443  DO 10 j = i + 1, ibnd
444  temp = rwork( k+j )
445  IF( temp.GT.smax ) THEN
446  isub = j
447  smax = temp
448  END IF
449  10 continue
450  IF( isub.NE.i ) THEN
451  rwork( k+isub ) = rwork( k+i )
452  rwork( k+i ) = smax
453  iwork( k+i ) = k + isub
454  ELSE
455  iwork( k+i ) = k + i
456  END IF
457  20 continue
458 *
459  return
460 *
461 * End of ZGGSVD
462 *
463  END