127 SUBROUTINE chetrs2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
137 INTEGER info, lda, ldb, n, nrhs
141 COMPLEX a( lda, * ), b( ldb, * ), work( * )
148 parameter( one = (1.0e+0,0.0e+0) )
152 INTEGER i, iinfo, j, k, kp
154 COMPLEX ak, akm1, akm1k, bk, bkm1, denom
164 INTRINSIC conjg, max, real
169 upper =
lsame( uplo,
'U' )
170 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
172 ELSE IF( n.LT.0 )
THEN
174 ELSE IF( nrhs.LT.0 )
THEN
176 ELSE IF( lda.LT.max( 1, n ) )
THEN
178 ELSE IF( ldb.LT.max( 1, n ) )
THEN
182 CALL
xerbla(
'CHETRS2', -info )
188 IF( n.EQ.0 .OR. nrhs.EQ.0 )
193 CALL
csyconv( uplo,
'C', n, a, lda, ipiv, work, iinfo )
201 DO WHILE ( k .GE. 1 )
202 IF( ipiv( k ).GT.0 )
THEN
207 $ CALL
cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
213 IF( kp.EQ.-ipiv( k-1 ) )
214 $ CALL
cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ), ldb )
221 CALL
ctrsm(
'L',
'U',
'N',
'U',n,nrhs,one,a,lda,b,ldb)
226 DO WHILE ( i .GE. 1 )
227 IF( ipiv(i) .GT. 0 )
THEN
228 s =
REAL( ONE ) /
REAL( A( I, I ) )
229 CALL
csscal( nrhs, s, b( i, 1 ), ldb )
230 elseif( i .GT. 1)
THEN
231 IF ( ipiv(i-1) .EQ. ipiv(i) )
THEN
233 akm1 = a( i-1, i-1 ) / akm1k
234 ak = a( i, i ) / conjg( akm1k )
235 denom = akm1*ak - one
237 bkm1 = b( i-1, j ) / akm1k
238 bk = b( i, j ) / conjg( akm1k )
239 b( i-1, j ) = ( ak*bkm1-bk ) / denom
240 b( i, j ) = ( akm1*bk-bkm1 ) / denom
250 CALL
ctrsm(
'L',
'U',
'C',
'U',n,nrhs,one,a,lda,b,ldb)
255 DO WHILE ( k .LE. n )
256 IF( ipiv( k ).GT.0 )
THEN
261 $ CALL
cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
267 IF( k .LT. n .AND. kp.EQ.-ipiv( k+1 ) )
268 $ CALL
cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
279 DO WHILE ( k .LE. n )
280 IF( ipiv( k ).GT.0 )
THEN
285 $ CALL
cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
291 IF( kp.EQ.-ipiv( k ) )
292 $ CALL
cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ), ldb )
299 CALL
ctrsm(
'L',
'L',
'N',
'U',n,nrhs,one,a,lda,b,ldb)
304 DO WHILE ( i .LE. n )
305 IF( ipiv(i) .GT. 0 )
THEN
306 s =
REAL( ONE ) /
REAL( A( I, I ) )
307 CALL
csscal( nrhs, s, b( i, 1 ), ldb )
310 akm1 = a( i, i ) / conjg( akm1k )
311 ak = a( i+1, i+1 ) / akm1k
312 denom = akm1*ak - one
314 bkm1 = b( i, j ) / conjg( akm1k )
315 bk = b( i+1, j ) / akm1k
316 b( i, j ) = ( ak*bkm1-bk ) / denom
317 b( i+1, j ) = ( akm1*bk-bkm1 ) / denom
326 CALL
ctrsm(
'L',
'L',
'C',
'U',n,nrhs,one,a,lda,b,ldb)
331 DO WHILE ( k .GE. 1 )
332 IF( ipiv( k ).GT.0 )
THEN
337 $ CALL
cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
343 IF( k.GT.1 .AND. kp.EQ.-ipiv( k-1 ) )
344 $ CALL
cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
353 CALL
csyconv( uplo,
'R', n, a, lda, ipiv, work, iinfo )