LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zerrsy()

subroutine zerrsy ( character*3  path,
integer  nunit 
)

ZERRSYX

Purpose:
 ZERRSY tests the error exits for the COMPLEX*16 routines
 for symmetric indefinite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrsy.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 57 of file zerrsyx.f.

58*
59* -- LAPACK test routine --
60* -- LAPACK is a software package provided by Univ. of Tennessee, --
61* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62*
63* .. Scalar Arguments ..
64 CHARACTER*3 PATH
65 INTEGER NUNIT
66* ..
67*
68* =====================================================================
69*
70* .. Parameters ..
71 INTEGER NMAX
72 parameter( nmax = 4 )
73* ..
74* .. Local Scalars ..
75 CHARACTER EQ
76 CHARACTER*2 C2
77 INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
78 DOUBLE PRECISION ANRM, RCOND, BERR
79* ..
80* .. Local Arrays ..
81 INTEGER IP( NMAX )
82 DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX ),
83 $ S( NMAX ), ERR_BNDS_N( NMAX, 3 ),
84 $ ERR_BNDS_C( NMAX, 3 ), PARAMS( 1 )
85 COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
86 $ E( NMAX ), W( 2*NMAX ), X( NMAX )
87* ..
88* .. External Functions ..
89 LOGICAL LSAMEN
90 EXTERNAL lsamen
91* ..
92* .. External Subroutines ..
93 EXTERNAL alaesm, chkxer, zspcon, zsprfs, zsptrf, zsptri,
99* ..
100* .. Scalars in Common ..
101 LOGICAL LERR, OK
102 CHARACTER*32 SRNAMT
103 INTEGER INFOT, NOUT
104* ..
105* .. Common blocks ..
106 COMMON / infoc / infot, nout, ok, lerr
107 COMMON / srnamc / srnamt
108* ..
109* .. Intrinsic Functions ..
110 INTRINSIC dble, dcmplx
111* ..
112* .. Executable Statements ..
113*
114 nout = nunit
115 WRITE( nout, fmt = * )
116 c2 = path( 2: 3 )
117*
118* Set the variables to innocuous values.
119*
120 DO 20 j = 1, nmax
121 DO 10 i = 1, nmax
122 a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
123 $ -1.d0 / dble( i+j ) )
124 af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
125 $ -1.d0 / dble( i+j ) )
126 10 CONTINUE
127 b( j ) = 0.d0
128 e( j ) = 0.d0
129 r1( j ) = 0.d0
130 r2( j ) = 0.d0
131 w( j ) = 0.d0
132 x( j ) = 0.d0
133 s( j ) = 0.d0
134 ip( j ) = j
135 20 CONTINUE
136 anrm = 1.0d0
137 ok = .true.
138*
139 IF( lsamen( 2, c2, 'SY' ) ) THEN
140*
141* Test error exits of the routines that use factorization
142* of a symmetric indefinite matrix with partial
143* (Bunch-Kaufman) diagonal pivoting method.
144*
145* ZSYTRF
146*
147 srnamt = 'ZSYTRF'
148 infot = 1
149 CALL zsytrf( '/', 0, a, 1, ip, w, 1, info )
150 CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
151 infot = 2
152 CALL zsytrf( 'U', -1, a, 1, ip, w, 1, info )
153 CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
154 infot = 4
155 CALL zsytrf( 'U', 2, a, 1, ip, w, 4, info )
156 CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
157 infot = 7
158 CALL zsytrf( 'U', 0, a, 1, ip, w, 0, info )
159 CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
160 infot = 7
161 CALL zsytrf( 'U', 0, a, 1, ip, w, -2, info )
162 CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
163*
164* ZSYTF2
165*
166 srnamt = 'ZSYTF2'
167 infot = 1
168 CALL zsytf2( '/', 0, a, 1, ip, info )
169 CALL chkxer( 'ZSYTF2', infot, nout, lerr, ok )
170 infot = 2
171 CALL zsytf2( 'U', -1, a, 1, ip, info )
172 CALL chkxer( 'ZSYTF2', infot, nout, lerr, ok )
173 infot = 4
174 CALL zsytf2( 'U', 2, a, 1, ip, info )
175 CALL chkxer( 'ZSYTF2', infot, nout, lerr, ok )
176*
177* ZSYTRI
178*
179 srnamt = 'ZSYTRI'
180 infot = 1
181 CALL zsytri( '/', 0, a, 1, ip, w, info )
182 CALL chkxer( 'ZSYTRI', infot, nout, lerr, ok )
183 infot = 2
184 CALL zsytri( 'U', -1, a, 1, ip, w, info )
185 CALL chkxer( 'ZSYTRI', infot, nout, lerr, ok )
186 infot = 4
187 CALL zsytri( 'U', 2, a, 1, ip, w, info )
188 CALL chkxer( 'ZSYTRI', infot, nout, lerr, ok )
189*
190* ZSYTRI2
191*
192 srnamt = 'ZSYTRI2'
193 infot = 1
194 CALL zsytri2( '/', 0, a, 1, ip, w, 1, info )
195 CALL chkxer( 'ZSYTRI2', infot, nout, lerr, ok )
196 infot = 2
197 CALL zsytri2( 'U', -1, a, 1, ip, w, 1, info )
198 CALL chkxer( 'ZSYTRI2', infot, nout, lerr, ok )
199 infot = 4
200 CALL zsytri2( 'U', 2, a, 1, ip, w, 1, info )
201 CALL chkxer( 'ZSYTRI2', infot, nout, lerr, ok )
202*
203* ZSYTRI2X
204*
205 srnamt = 'ZSYTRI2X'
206 infot = 1
207 CALL zsytri2x( '/', 0, a, 1, ip, w, 1, info )
208 CALL chkxer( 'ZSYTRI2X', infot, nout, lerr, ok )
209 infot = 2
210 CALL zsytri2x( 'U', -1, a, 1, ip, w, 1, info )
211 CALL chkxer( 'ZSYTRI2X', infot, nout, lerr, ok )
212 infot = 4
213 CALL zsytri2x( 'U', 2, a, 1, ip, w, 1, info )
214 CALL chkxer( 'ZSYTRI2X', infot, nout, lerr, ok )
215*
216* ZSYTRS
217*
218 srnamt = 'ZSYTRS'
219 infot = 1
220 CALL zsytrs( '/', 0, 0, a, 1, ip, b, 1, info )
221 CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
222 infot = 2
223 CALL zsytrs( 'U', -1, 0, a, 1, ip, b, 1, info )
224 CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
225 infot = 3
226 CALL zsytrs( 'U', 0, -1, a, 1, ip, b, 1, info )
227 CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
228 infot = 5
229 CALL zsytrs( 'U', 2, 1, a, 1, ip, b, 2, info )
230 CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
231 infot = 8
232 CALL zsytrs( 'U', 2, 1, a, 2, ip, b, 1, info )
233 CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
234*
235* ZSYRFS
236*
237 srnamt = 'ZSYRFS'
238 infot = 1
239 CALL zsyrfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
240 $ r, info )
241 CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
242 infot = 2
243 CALL zsyrfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
244 $ w, r, info )
245 CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
246 infot = 3
247 CALL zsyrfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
248 $ w, r, info )
249 CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
250 infot = 5
251 CALL zsyrfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
252 $ r, info )
253 CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
254 infot = 7
255 CALL zsyrfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
256 $ r, info )
257 CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
258 infot = 10
259 CALL zsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
260 $ r, info )
261 CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
262 infot = 12
263 CALL zsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
264 $ r, info )
265 CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
266*
267* ZSYRFSX
268*
269 n_err_bnds = 3
270 nparams = 0
271 srnamt = 'ZSYRFSX'
272 infot = 1
273 CALL zsyrfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
274 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
275 $ params, w, r, info )
276 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
277 infot = 2
278 CALL zsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
279 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
280 $ params, w, r, info )
281 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
282 eq = 'N'
283 infot = 3
284 CALL zsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
285 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
286 $ params, w, r, info )
287 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
288 infot = 4
289 CALL zsyrfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
290 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
291 $ params, w, r, info )
292 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
293 infot = 6
294 CALL zsyrfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
295 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
296 $ params, w, r, info )
297 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
298 infot = 8
299 CALL zsyrfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
300 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
301 $ params, w, r, info )
302 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
303 infot = 12
304 CALL zsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
305 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
306 $ params, w, r, info )
307 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
308 infot = 14
309 CALL zsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
310 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
311 $ params, w, r, info )
312 CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
313*
314* ZSYCON
315*
316 srnamt = 'ZSYCON'
317 infot = 1
318 CALL zsycon( '/', 0, a, 1, ip, anrm, rcond, w, info )
319 CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
320 infot = 2
321 CALL zsycon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
322 CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
323 infot = 4
324 CALL zsycon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
325 CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
326 infot = 6
327 CALL zsycon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
328 CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
329*
330 ELSE IF( lsamen( 2, c2, 'SR' ) ) THEN
331*
332* Test error exits of the routines that use factorization
333* of a symmetric indefinite matrix with rook
334* (bounded Bunch-Kaufman) diagonal pivoting method.
335*
336* ZSYTRF_ROOK
337*
338 srnamt = 'ZSYTRF_ROOK'
339 infot = 1
340 CALL zsytrf_rook( '/', 0, a, 1, ip, w, 1, info )
341 CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
342 infot = 2
343 CALL zsytrf_rook( 'U', -1, a, 1, ip, w, 1, info )
344 CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
345 infot = 4
346 CALL zsytrf_rook( 'U', 2, a, 1, ip, w, 4, info )
347 CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
348 infot = 7
349 CALL zsytrf_rook( 'U', 0, a, 1, ip, w, 0, info )
350 CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
351 infot = 7
352 CALL zsytrf_rook( 'U', 0, a, 1, ip, w, -2, info )
353 CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
354*
355* ZSYTF2_ROOK
356*
357 srnamt = 'ZSYTF2_ROOK'
358 infot = 1
359 CALL zsytf2_rook( '/', 0, a, 1, ip, info )
360 CALL chkxer( 'ZSYTF2_ROOK', infot, nout, lerr, ok )
361 infot = 2
362 CALL zsytf2_rook( 'U', -1, a, 1, ip, info )
363 CALL chkxer( 'ZSYTF2_ROOK', infot, nout, lerr, ok )
364 infot = 4
365 CALL zsytf2_rook( 'U', 2, a, 1, ip, info )
366 CALL chkxer( 'ZSYTF2_ROOK', infot, nout, lerr, ok )
367*
368* ZSYTRI_ROOK
369*
370 srnamt = 'ZSYTRI_ROOK'
371 infot = 1
372 CALL zsytri_rook( '/', 0, a, 1, ip, w, info )
373 CALL chkxer( 'ZSYTRI_ROOK', infot, nout, lerr, ok )
374 infot = 2
375 CALL zsytri_rook( 'U', -1, a, 1, ip, w, info )
376 CALL chkxer( 'ZSYTRI_ROOK', infot, nout, lerr, ok )
377 infot = 4
378 CALL zsytri_rook( 'U', 2, a, 1, ip, w, info )
379 CALL chkxer( 'ZSYTRI_ROOK', infot, nout, lerr, ok )
380*
381* ZSYTRS_ROOK
382*
383 srnamt = 'ZSYTRS_ROOK'
384 infot = 1
385 CALL zsytrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
386 CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
387 infot = 2
388 CALL zsytrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
389 CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
390 infot = 3
391 CALL zsytrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
392 CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
393 infot = 5
394 CALL zsytrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
395 CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
396 infot = 8
397 CALL zsytrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
398 CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
399*
400* ZSYCON_ROOK
401*
402 srnamt = 'ZSYCON_ROOK'
403 infot = 1
404 CALL zsycon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
405 CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
406 infot = 2
407 CALL zsycon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
408 CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
409 infot = 4
410 CALL zsycon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
411 CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
412 infot = 6
413 CALL zsycon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
414 CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
415*
416 ELSE IF( lsamen( 2, c2, 'SK' ) ) THEN
417*
418* Test error exits of the routines that use factorization
419* of a symmetric indefinite matrix with rook
420* (bounded Bunch-Kaufman) pivoting with the new storage
421* format for factors L ( or U) and D.
422*
423* L (or U) is stored in A, diagonal of D is stored on the
424* diagonal of A, subdiagonal of D is stored in a separate array E.
425*
426* ZSYTRF_RK
427*
428 srnamt = 'ZSYTRF_RK'
429 infot = 1
430 CALL zsytrf_rk( '/', 0, a, 1, e, ip, w, 1, info )
431 CALL chkxer( 'ZSYTRF_RK', infot, nout, lerr, ok )
432 infot = 2
433 CALL zsytrf_rk( 'U', -1, a, 1, e, ip, w, 1, info )
434 CALL chkxer( 'ZSYTRF_RK', infot, nout, lerr, ok )
435 infot = 4
436 CALL zsytrf_rk( 'U', 2, a, 1, e, ip, w, 4, info )
437 CALL chkxer( 'ZSYTRF_RK', infot, nout, lerr, ok )
438 infot = 8
439 CALL zsytrf_rk( 'U', 0, a, 1, e, ip, w, 0, info )
440 CALL chkxer( 'ZSYTRF_RK', infot, nout, lerr, ok )
441 infot = 8
442 CALL zsytrf_rk( 'U', 0, a, 1, e, ip, w, -2, info )
443 CALL chkxer( 'ZSYTRF_RK', infot, nout, lerr, ok )
444*
445* ZSYTF2_RK
446*
447 srnamt = 'ZSYTF2_RK'
448 infot = 1
449 CALL zsytf2_rk( '/', 0, a, 1, e, ip, info )
450 CALL chkxer( 'ZSYTF2_RK', infot, nout, lerr, ok )
451 infot = 2
452 CALL zsytf2_rk( 'U', -1, a, 1, e, ip, info )
453 CALL chkxer( 'ZSYTF2_RK', infot, nout, lerr, ok )
454 infot = 4
455 CALL zsytf2_rk( 'U', 2, a, 1, e, ip, info )
456 CALL chkxer( 'ZSYTF2_RK', infot, nout, lerr, ok )
457*
458* ZSYTRI_3
459*
460 srnamt = 'ZSYTRI_3'
461 infot = 1
462 CALL zsytri_3( '/', 0, a, 1, e, ip, w, 1, info )
463 CALL chkxer( 'ZSYTRI_3', infot, nout, lerr, ok )
464 infot = 2
465 CALL zsytri_3( 'U', -1, a, 1, e, ip, w, 1, info )
466 CALL chkxer( 'ZSYTRI_3', infot, nout, lerr, ok )
467 infot = 4
468 CALL zsytri_3( 'U', 2, a, 1, e, ip, w, 1, info )
469 CALL chkxer( 'ZSYTRI_3', infot, nout, lerr, ok )
470 infot = 8
471 CALL zsytri_3( 'U', 0, a, 1, e, ip, w, 0, info )
472 CALL chkxer( 'ZSYTRI_3', infot, nout, lerr, ok )
473 infot = 8
474 CALL zsytri_3( 'U', 0, a, 1, e, ip, w, -2, info )
475 CALL chkxer( 'ZSYTRI_3', infot, nout, lerr, ok )
476*
477* ZSYTRI_3X
478*
479 srnamt = 'ZSYTRI_3X'
480 infot = 1
481 CALL zsytri_3x( '/', 0, a, 1, e, ip, w, 1, info )
482 CALL chkxer( 'ZSYTRI_3X', infot, nout, lerr, ok )
483 infot = 2
484 CALL zsytri_3x( 'U', -1, a, 1, e, ip, w, 1, info )
485 CALL chkxer( 'ZSYTRI_3X', infot, nout, lerr, ok )
486 infot = 4
487 CALL zsytri_3x( 'U', 2, a, 1, e, ip, w, 1, info )
488 CALL chkxer( 'ZSYTRI_3X', infot, nout, lerr, ok )
489*
490* ZSYTRS_3
491*
492 srnamt = 'ZSYTRS_3'
493 infot = 1
494 CALL zsytrs_3( '/', 0, 0, a, 1, e, ip, b, 1, info )
495 CALL chkxer( 'ZSYTRS_3', infot, nout, lerr, ok )
496 infot = 2
497 CALL zsytrs_3( 'U', -1, 0, a, 1, e, ip, b, 1, info )
498 CALL chkxer( 'ZSYTRS_3', infot, nout, lerr, ok )
499 infot = 3
500 CALL zsytrs_3( 'U', 0, -1, a, 1, e, ip, b, 1, info )
501 CALL chkxer( 'ZSYTRS_3', infot, nout, lerr, ok )
502 infot = 5
503 CALL zsytrs_3( 'U', 2, 1, a, 1, e, ip, b, 2, info )
504 CALL chkxer( 'ZSYTRS_3', infot, nout, lerr, ok )
505 infot = 9
506 CALL zsytrs_3( 'U', 2, 1, a, 2, e, ip, b, 1, info )
507 CALL chkxer( 'ZSYTRS_3', infot, nout, lerr, ok )
508*
509* ZSYCON_3
510*
511 srnamt = 'ZSYCON_3'
512 infot = 1
513 CALL zsycon_3( '/', 0, a, 1, e, ip, anrm, rcond, w, info )
514 CALL chkxer( 'ZSYCON_3', infot, nout, lerr, ok )
515 infot = 2
516 CALL zsycon_3( 'U', -1, a, 1, e, ip, anrm, rcond, w, info )
517 CALL chkxer( 'ZSYCON_3', infot, nout, lerr, ok )
518 infot = 4
519 CALL zsycon_3( 'U', 2, a, 1, e, ip, anrm, rcond, w, info )
520 CALL chkxer( 'ZSYCON_3', infot, nout, lerr, ok )
521 infot = 7
522 CALL zsycon_3( 'U', 1, a, 1, e, ip, -1.0d0, rcond, w, info)
523 CALL chkxer( 'ZSYCON_3', infot, nout, lerr, ok )
524*
525 ELSE IF( lsamen( 2, c2, 'SP' ) ) THEN
526*
527* Test error exits of the routines that use factorization
528* of a symmetric indefinite packed matrix with partial
529* (Bunch-Kaufman) pivoting.
530*
531* ZSPTRF
532*
533 srnamt = 'ZSPTRF'
534 infot = 1
535 CALL zsptrf( '/', 0, a, ip, info )
536 CALL chkxer( 'ZSPTRF', infot, nout, lerr, ok )
537 infot = 2
538 CALL zsptrf( 'U', -1, a, ip, info )
539 CALL chkxer( 'ZSPTRF', infot, nout, lerr, ok )
540*
541* ZSPTRI
542*
543 srnamt = 'ZSPTRI'
544 infot = 1
545 CALL zsptri( '/', 0, a, ip, w, info )
546 CALL chkxer( 'ZSPTRI', infot, nout, lerr, ok )
547 infot = 2
548 CALL zsptri( 'U', -1, a, ip, w, info )
549 CALL chkxer( 'ZSPTRI', infot, nout, lerr, ok )
550*
551* ZSPTRS
552*
553 srnamt = 'ZSPTRS'
554 infot = 1
555 CALL zsptrs( '/', 0, 0, a, ip, b, 1, info )
556 CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
557 infot = 2
558 CALL zsptrs( 'U', -1, 0, a, ip, b, 1, info )
559 CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
560 infot = 3
561 CALL zsptrs( 'U', 0, -1, a, ip, b, 1, info )
562 CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
563 infot = 7
564 CALL zsptrs( 'U', 2, 1, a, ip, b, 1, info )
565 CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
566*
567* ZSPRFS
568*
569 srnamt = 'ZSPRFS'
570 infot = 1
571 CALL zsprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
572 $ info )
573 CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
574 infot = 2
575 CALL zsprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
576 $ info )
577 CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
578 infot = 3
579 CALL zsprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
580 $ info )
581 CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
582 infot = 8
583 CALL zsprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
584 $ info )
585 CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
586 infot = 10
587 CALL zsprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
588 $ info )
589 CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
590*
591* ZSPCON
592*
593 srnamt = 'ZSPCON'
594 infot = 1
595 CALL zspcon( '/', 0, a, ip, anrm, rcond, w, info )
596 CALL chkxer( 'ZSPCON', infot, nout, lerr, ok )
597 infot = 2
598 CALL zspcon( 'U', -1, a, ip, anrm, rcond, w, info )
599 CALL chkxer( 'ZSPCON', infot, nout, lerr, ok )
600 infot = 5
601 CALL zspcon( 'U', 1, a, ip, -anrm, rcond, w, info )
602 CALL chkxer( 'ZSPCON', infot, nout, lerr, ok )
603 END IF
604*
605* Print a summary line.
606*
607 CALL alaesm( path, ok, nout )
608*
609 RETURN
610*
611* End of ZERRSYX
612*
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine zsycon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)
ZSYCON_3
Definition zsycon_3.f:166
subroutine zsycon_rook(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
ZSYCON_ROOK
subroutine zsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
ZSYCON
Definition zsycon.f:125
subroutine zsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZSYRFS
Definition zsyrfs.f:192
subroutine zsyrfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZSYRFSX
Definition zsyrfsx.f:402
subroutine zsytf2_rk(uplo, n, a, lda, e, ipiv, info)
ZSYTF2_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch...
Definition zsytf2_rk.f:241
subroutine zsytf2_rook(uplo, n, a, lda, ipiv, info)
ZSYTF2_ROOK computes the factorization of a complex symmetric indefinite matrix using the bounded Bun...
subroutine zsytf2(uplo, n, a, lda, ipiv, info)
ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition zsytf2.f:191
subroutine zsytrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
ZSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch...
Definition zsytrf_rk.f:259
subroutine zsytrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
ZSYTRF_ROOK
subroutine zsytrf(uplo, n, a, lda, ipiv, work, lwork, info)
ZSYTRF
Definition zsytrf.f:182
subroutine zsytri2(uplo, n, a, lda, ipiv, work, lwork, info)
ZSYTRI2
Definition zsytri2.f:127
subroutine zsytri2x(uplo, n, a, lda, ipiv, work, nb, info)
ZSYTRI2X
Definition zsytri2x.f:120
subroutine zsytri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
ZSYTRI_3
Definition zsytri_3.f:170
subroutine zsytri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
ZSYTRI_3X
Definition zsytri_3x.f:159
subroutine zsytri_rook(uplo, n, a, lda, ipiv, work, info)
ZSYTRI_ROOK
subroutine zsytri(uplo, n, a, lda, ipiv, work, info)
ZSYTRI
Definition zsytri.f:114
subroutine zsytrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
ZSYTRS_3
Definition zsytrs_3.f:165
subroutine zsytrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS_ROOK
subroutine zsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS
Definition zsytrs.f:120
subroutine zspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)
ZSPCON
Definition zspcon.f:118
subroutine zsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZSPRFS
Definition zsprfs.f:180
subroutine zsptrf(uplo, n, ap, ipiv, info)
ZSPTRF
Definition zsptrf.f:158
subroutine zsptri(uplo, n, ap, ipiv, work, info)
ZSPTRI
Definition zsptri.f:109
subroutine zsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
ZSPTRS
Definition zsptrs.f:115
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:74
Here is the call graph for this function: