114
115
116
117
118
119
120 CHARACTER UPLO
121 INTEGER INFO, LDA, N
122
123
124 INTEGER IPIV( * )
125 COMPLEX*16 A( LDA, * ), WORK( * )
126
127
128
129
130
131 COMPLEX*16 ONE, ZERO
132 parameter( one = ( 1.0d+0, 0.0d+0 ),
133 $ zero = ( 0.0d+0, 0.0d+0 ) )
134
135
136 LOGICAL UPPER
137 INTEGER K, KP, KSTEP
138 COMPLEX*16 AK, AKKP1, AKP1, D, T, TEMP
139
140
141 LOGICAL LSAME
142 COMPLEX*16 ZDOTU
144
145
147
148
149 INTRINSIC abs, max
150
151
152
153
154
155 info = 0
156 upper =
lsame( uplo,
'U' )
157 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
158 info = -1
159 ELSE IF( n.LT.0 ) THEN
160 info = -2
161 ELSE IF( lda.LT.max( 1, n ) ) THEN
162 info = -4
163 END IF
164 IF( info.NE.0 ) THEN
165 CALL xerbla(
'ZSYTRI', -info )
166 RETURN
167 END IF
168
169
170
171 IF( n.EQ.0 )
172 $ RETURN
173
174
175
176 IF( upper ) THEN
177
178
179
180 DO 10 info = n, 1, -1
181 IF( ipiv( info ).GT.0 .AND. a( info, info ).EQ.zero )
182 $ RETURN
183 10 CONTINUE
184 ELSE
185
186
187
188 DO 20 info = 1, n
189 IF( ipiv( info ).GT.0 .AND. a( info, info ).EQ.zero )
190 $ RETURN
191 20 CONTINUE
192 END IF
193 info = 0
194
195 IF( upper ) THEN
196
197
198
199
200
201
202 k = 1
203 30 CONTINUE
204
205
206
207 IF( k.GT.n )
208 $ GO TO 40
209
210 IF( ipiv( k ).GT.0 ) THEN
211
212
213
214
215
216 a( k, k ) = one / a( k, k )
217
218
219
220 IF( k.GT.1 ) THEN
221 CALL zcopy( k-1, a( 1, k ), 1, work, 1 )
222 CALL zsymv( uplo, k-1, -one, a, lda, work, 1, zero,
223 $ a( 1, k ), 1 )
224 a( k, k ) = a( k, k ) -
zdotu( k-1, work, 1, a( 1, k ),
225 $ 1 )
226 END IF
227 kstep = 1
228 ELSE
229
230
231
232
233
234 t = a( k, k+1 )
235 ak = a( k, k ) / t
236 akp1 = a( k+1, k+1 ) / t
237 akkp1 = a( k, k+1 ) / t
238 d = t*( ak*akp1-one )
239 a( k, k ) = akp1 / d
240 a( k+1, k+1 ) = ak / d
241 a( k, k+1 ) = -akkp1 / d
242
243
244
245 IF( k.GT.1 ) THEN
246 CALL zcopy( k-1, a( 1, k ), 1, work, 1 )
247 CALL zsymv( uplo, k-1, -one, a, lda, work, 1, zero,
248 $ a( 1, k ), 1 )
249 a( k, k ) = a( k, k ) -
zdotu( k-1, work, 1, a( 1, k ),
250 $ 1 )
251 a( k, k+1 ) = a( k, k+1 ) -
252 $
zdotu( k-1, a( 1, k ), 1, a( 1, k+1 ), 1 )
253 CALL zcopy( k-1, a( 1, k+1 ), 1, work, 1 )
254 CALL zsymv( uplo, k-1, -one, a, lda, work, 1, zero,
255 $ a( 1, k+1 ), 1 )
256 a( k+1, k+1 ) = a( k+1, k+1 ) -
257 $
zdotu( k-1, work, 1, a( 1, k+1 ), 1 )
258 END IF
259 kstep = 2
260 END IF
261
262 kp = abs( ipiv( k ) )
263 IF( kp.NE.k ) THEN
264
265
266
267
268 CALL zswap( kp-1, a( 1, k ), 1, a( 1, kp ), 1 )
269 CALL zswap( k-kp-1, a( kp+1, k ), 1, a( kp, kp+1 ), lda )
270 temp = a( k, k )
271 a( k, k ) = a( kp, kp )
272 a( kp, kp ) = temp
273 IF( kstep.EQ.2 ) THEN
274 temp = a( k, k+1 )
275 a( k, k+1 ) = a( kp, k+1 )
276 a( kp, k+1 ) = temp
277 END IF
278 END IF
279
280 k = k + kstep
281 GO TO 30
282 40 CONTINUE
283
284 ELSE
285
286
287
288
289
290
291 k = n
292 50 CONTINUE
293
294
295
296 IF( k.LT.1 )
297 $ GO TO 60
298
299 IF( ipiv( k ).GT.0 ) THEN
300
301
302
303
304
305 a( k, k ) = one / a( k, k )
306
307
308
309 IF( k.LT.n ) THEN
310 CALL zcopy( n-k, a( k+1, k ), 1, work, 1 )
311 CALL zsymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1,
312 $ zero, a( k+1, k ), 1 )
313 a( k, k ) = a( k, k ) -
zdotu( n-k, work, 1, a( k+1, k ),
314 $ 1 )
315 END IF
316 kstep = 1
317 ELSE
318
319
320
321
322
323 t = a( k, k-1 )
324 ak = a( k-1, k-1 ) / t
325 akp1 = a( k, k ) / t
326 akkp1 = a( k, k-1 ) / t
327 d = t*( ak*akp1-one )
328 a( k-1, k-1 ) = akp1 / d
329 a( k, k ) = ak / d
330 a( k, k-1 ) = -akkp1 / d
331
332
333
334 IF( k.LT.n ) THEN
335 CALL zcopy( n-k, a( k+1, k ), 1, work, 1 )
336 CALL zsymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1,
337 $ zero, a( k+1, k ), 1 )
338 a( k, k ) = a( k, k ) -
zdotu( n-k, work, 1, a( k+1, k ),
339 $ 1 )
340 a( k, k-1 ) = a( k, k-1 ) -
341 $
zdotu( n-k, a( k+1, k ), 1, a( k+1, k-1 ),
342 $ 1 )
343 CALL zcopy( n-k, a( k+1, k-1 ), 1, work, 1 )
344 CALL zsymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1,
345 $ zero, a( k+1, k-1 ), 1 )
346 a( k-1, k-1 ) = a( k-1, k-1 ) -
347 $
zdotu( n-k, work, 1, a( k+1, k-1 ), 1 )
348 END IF
349 kstep = 2
350 END IF
351
352 kp = abs( ipiv( k ) )
353 IF( kp.NE.k ) THEN
354
355
356
357
358 IF( kp.LT.n )
359 $
CALL zswap( n-kp, a( kp+1, k ), 1, a( kp+1, kp ), 1 )
360 CALL zswap( kp-k-1, a( k+1, k ), 1, a( kp, k+1 ), lda )
361 temp = a( k, k )
362 a( k, k ) = a( kp, kp )
363 a( kp, kp ) = temp
364 IF( kstep.EQ.2 ) THEN
365 temp = a( k, k-1 )
366 a( k, k-1 ) = a( kp, k-1 )
367 a( kp, k-1 ) = temp
368 END IF
369 END IF
370
371 k = k - kstep
372 GO TO 50
373 60 CONTINUE
374 END IF
375
376 RETURN
377
378
379
subroutine xerbla(srname, info)
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
complex *16 function zdotu(n, zx, incx, zy, incy)
ZDOTU
subroutine zsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZSYMV computes a matrix-vector product for a complex symmetric matrix.
logical function lsame(ca, cb)
LSAME
subroutine zswap(n, zx, incx, zy, incy)
ZSWAP