LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zsytf2.f
Go to the documentation of this file.
1*> \brief \b ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZSYTF2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER INFO, LDA, N
24* ..
25* .. Array Arguments ..
26* INTEGER IPIV( * )
27* COMPLEX*16 A( LDA, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZSYTF2 computes the factorization of a complex symmetric matrix A
37*> using the Bunch-Kaufman diagonal pivoting method:
38*>
39*> A = U*D*U**T or A = L*D*L**T
40*>
41*> where U (or L) is a product of permutation and unit upper (lower)
42*> triangular matrices, U**T is the transpose of U, and D is symmetric and
43*> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
44*>
45*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
46*> \endverbatim
47*
48* Arguments:
49* ==========
50*
51*> \param[in] UPLO
52*> \verbatim
53*> UPLO is CHARACTER*1
54*> Specifies whether the upper or lower triangular part of the
55*> symmetric matrix A is stored:
56*> = 'U': Upper triangular
57*> = 'L': Lower triangular
58*> \endverbatim
59*>
60*> \param[in] N
61*> \verbatim
62*> N is INTEGER
63*> The order of the matrix A. N >= 0.
64*> \endverbatim
65*>
66*> \param[in,out] A
67*> \verbatim
68*> A is COMPLEX*16 array, dimension (LDA,N)
69*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
70*> n-by-n upper triangular part of A contains the upper
71*> triangular part of the matrix A, and the strictly lower
72*> triangular part of A is not referenced. If UPLO = 'L', the
73*> leading n-by-n lower triangular part of A contains the lower
74*> triangular part of the matrix A, and the strictly upper
75*> triangular part of A is not referenced.
76*>
77*> On exit, the block diagonal matrix D and the multipliers used
78*> to obtain the factor U or L (see below for further details).
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*> LDA is INTEGER
84*> The leading dimension of the array A. LDA >= max(1,N).
85*> \endverbatim
86*>
87*> \param[out] IPIV
88*> \verbatim
89*> IPIV is INTEGER array, dimension (N)
90*> Details of the interchanges and the block structure of D.
91*>
92*> If UPLO = 'U':
93*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
94*> interchanged and D(k,k) is a 1-by-1 diagonal block.
95*>
96*> If IPIV(k) = IPIV(k-1) < 0, then rows and columns
97*> k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
98*> is a 2-by-2 diagonal block.
99*>
100*> If UPLO = 'L':
101*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
102*> interchanged and D(k,k) is a 1-by-1 diagonal block.
103*>
104*> If IPIV(k) = IPIV(k+1) < 0, then rows and columns
105*> k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
106*> is a 2-by-2 diagonal block.
107*> \endverbatim
108*>
109*> \param[out] INFO
110*> \verbatim
111*> INFO is INTEGER
112*> = 0: successful exit
113*> < 0: if INFO = -k, the k-th argument had an illegal value
114*> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
115*> has been completed, but the block diagonal matrix D is
116*> exactly singular, and division by zero will occur if it
117*> is used to solve a system of equations.
118*> \endverbatim
119*
120* Authors:
121* ========
122*
123*> \author Univ. of Tennessee
124*> \author Univ. of California Berkeley
125*> \author Univ. of Colorado Denver
126*> \author NAG Ltd.
127*
128*> \ingroup hetf2
129*
130*> \par Further Details:
131* =====================
132*>
133*> \verbatim
134*>
135*> If UPLO = 'U', then A = U*D*U**T, where
136*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
137*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
138*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
139*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
140*> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
141*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
142*>
143*> ( I v 0 ) k-s
144*> U(k) = ( 0 I 0 ) s
145*> ( 0 0 I ) n-k
146*> k-s s n-k
147*>
148*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
149*> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
150*> and A(k,k), and v overwrites A(1:k-2,k-1:k).
151*>
152*> If UPLO = 'L', then A = L*D*L**T, where
153*> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
154*> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
155*> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
156*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
157*> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
158*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
159*>
160*> ( I 0 0 ) k-1
161*> L(k) = ( 0 I 0 ) s
162*> ( 0 v I ) n-k-s+1
163*> k-1 s n-k-s+1
164*>
165*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
166*> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
167*> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
168*> \endverbatim
169*
170*> \par Contributors:
171* ==================
172*>
173*> \verbatim
174*>
175*> 09-29-06 - patch from
176*> Bobby Cheng, MathWorks
177*>
178*> Replace l.209 and l.377
179*> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
180*> by
181*> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
182*>
183*> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
184*> Company
185*> \endverbatim
186*
187* =====================================================================
188 SUBROUTINE zsytf2( UPLO, N, A, LDA, IPIV, INFO )
189*
190* -- LAPACK computational routine --
191* -- LAPACK is a software package provided by Univ. of Tennessee, --
192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193*
194* .. Scalar Arguments ..
195 CHARACTER UPLO
196 INTEGER INFO, LDA, N
197* ..
198* .. Array Arguments ..
199 INTEGER IPIV( * )
200 COMPLEX*16 A( LDA, * )
201* ..
202*
203* =====================================================================
204*
205* .. Parameters ..
206 DOUBLE PRECISION ZERO, ONE
207 parameter( zero = 0.0d+0, one = 1.0d+0 )
208 DOUBLE PRECISION EIGHT, SEVTEN
209 parameter( eight = 8.0d+0, sevten = 17.0d+0 )
210 COMPLEX*16 CONE
211 parameter( cone = ( 1.0d+0, 0.0d+0 ) )
212* ..
213* .. Local Scalars ..
214 LOGICAL UPPER
215 INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
216 DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, ROWMAX
217 COMPLEX*16 D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, Z
218* ..
219* .. External Functions ..
220 LOGICAL DISNAN, LSAME
221 INTEGER IZAMAX
222 EXTERNAL disnan, lsame, izamax
223* ..
224* .. External Subroutines ..
225 EXTERNAL xerbla, zscal, zswap, zsyr
226* ..
227* .. Intrinsic Functions ..
228 INTRINSIC abs, dble, dimag, max, sqrt
229* ..
230* .. Statement Functions ..
231 DOUBLE PRECISION CABS1
232* ..
233* .. Statement Function definitions ..
234 cabs1( z ) = abs( dble( z ) ) + abs( dimag( z ) )
235* ..
236* .. Executable Statements ..
237*
238* Test the input parameters.
239*
240 info = 0
241 upper = lsame( uplo, 'U' )
242 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
243 info = -1
244 ELSE IF( n.LT.0 ) THEN
245 info = -2
246 ELSE IF( lda.LT.max( 1, n ) ) THEN
247 info = -4
248 END IF
249 IF( info.NE.0 ) THEN
250 CALL xerbla( 'ZSYTF2', -info )
251 RETURN
252 END IF
253*
254* Initialize ALPHA for use in choosing pivot block size.
255*
256 alpha = ( one+sqrt( sevten ) ) / eight
257*
258 IF( upper ) THEN
259*
260* Factorize A as U*D*U**T using the upper triangle of A
261*
262* K is the main loop index, decreasing from N to 1 in steps of
263* 1 or 2
264*
265 k = n
266 10 CONTINUE
267*
268* If K < 1, exit from loop
269*
270 IF( k.LT.1 )
271 $ GO TO 70
272 kstep = 1
273*
274* Determine rows and columns to be interchanged and whether
275* a 1-by-1 or 2-by-2 pivot block will be used
276*
277 absakk = cabs1( a( k, k ) )
278*
279* IMAX is the row-index of the largest off-diagonal element in
280* column K, and COLMAX is its absolute value.
281* Determine both COLMAX and IMAX.
282*
283 IF( k.GT.1 ) THEN
284 imax = izamax( k-1, a( 1, k ), 1 )
285 colmax = cabs1( a( imax, k ) )
286 ELSE
287 colmax = zero
288 END IF
289*
290 IF( max( absakk, colmax ).EQ.zero .OR. disnan(absakk) ) THEN
291*
292* Column K is zero or underflow, or contains a NaN:
293* set INFO and continue
294*
295 IF( info.EQ.0 )
296 $ info = k
297 kp = k
298 ELSE
299 IF( absakk.GE.alpha*colmax ) THEN
300*
301* no interchange, use 1-by-1 pivot block
302*
303 kp = k
304 ELSE
305*
306* JMAX is the column-index of the largest off-diagonal
307* element in row IMAX, and ROWMAX is its absolute value
308*
309 jmax = imax + izamax( k-imax, a( imax, imax+1 ), lda )
310 rowmax = cabs1( a( imax, jmax ) )
311 IF( imax.GT.1 ) THEN
312 jmax = izamax( imax-1, a( 1, imax ), 1 )
313 rowmax = max( rowmax, cabs1( a( jmax, imax ) ) )
314 END IF
315*
316 IF( absakk.GE.alpha*colmax*( colmax / rowmax ) ) THEN
317*
318* no interchange, use 1-by-1 pivot block
319*
320 kp = k
321 ELSE IF( cabs1( a( imax, imax ) ).GE.alpha*rowmax ) THEN
322*
323* interchange rows and columns K and IMAX, use 1-by-1
324* pivot block
325*
326 kp = imax
327 ELSE
328*
329* interchange rows and columns K-1 and IMAX, use 2-by-2
330* pivot block
331*
332 kp = imax
333 kstep = 2
334 END IF
335 END IF
336*
337 kk = k - kstep + 1
338 IF( kp.NE.kk ) THEN
339*
340* Interchange rows and columns KK and KP in the leading
341* submatrix A(1:k,1:k)
342*
343 CALL zswap( kp-1, a( 1, kk ), 1, a( 1, kp ), 1 )
344 CALL zswap( kk-kp-1, a( kp+1, kk ), 1, a( kp, kp+1 ),
345 $ lda )
346 t = a( kk, kk )
347 a( kk, kk ) = a( kp, kp )
348 a( kp, kp ) = t
349 IF( kstep.EQ.2 ) THEN
350 t = a( k-1, k )
351 a( k-1, k ) = a( kp, k )
352 a( kp, k ) = t
353 END IF
354 END IF
355*
356* Update the leading submatrix
357*
358 IF( kstep.EQ.1 ) THEN
359*
360* 1-by-1 pivot block D(k): column k now holds
361*
362* W(k) = U(k)*D(k)
363*
364* where U(k) is the k-th column of U
365*
366* Perform a rank-1 update of A(1:k-1,1:k-1) as
367*
368* A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
369*
370 r1 = cone / a( k, k )
371 CALL zsyr( uplo, k-1, -r1, a( 1, k ), 1, a, lda )
372*
373* Store U(k) in column k
374*
375 CALL zscal( k-1, r1, a( 1, k ), 1 )
376 ELSE
377*
378* 2-by-2 pivot block D(k): columns k and k-1 now hold
379*
380* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
381*
382* where U(k) and U(k-1) are the k-th and (k-1)-th columns
383* of U
384*
385* Perform a rank-2 update of A(1:k-2,1:k-2) as
386*
387* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
388* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
389*
390 IF( k.GT.2 ) THEN
391*
392 d12 = a( k-1, k )
393 d22 = a( k-1, k-1 ) / d12
394 d11 = a( k, k ) / d12
395 t = cone / ( d11*d22-cone )
396 d12 = t / d12
397*
398 DO 30 j = k - 2, 1, -1
399 wkm1 = d12*( d11*a( j, k-1 )-a( j, k ) )
400 wk = d12*( d22*a( j, k )-a( j, k-1 ) )
401 DO 20 i = j, 1, -1
402 a( i, j ) = a( i, j ) - a( i, k )*wk -
403 $ a( i, k-1 )*wkm1
404 20 CONTINUE
405 a( j, k ) = wk
406 a( j, k-1 ) = wkm1
407 30 CONTINUE
408*
409 END IF
410*
411 END IF
412 END IF
413*
414* Store details of the interchanges in IPIV
415*
416 IF( kstep.EQ.1 ) THEN
417 ipiv( k ) = kp
418 ELSE
419 ipiv( k ) = -kp
420 ipiv( k-1 ) = -kp
421 END IF
422*
423* Decrease K and return to the start of the main loop
424*
425 k = k - kstep
426 GO TO 10
427*
428 ELSE
429*
430* Factorize A as L*D*L**T using the lower triangle of A
431*
432* K is the main loop index, increasing from 1 to N in steps of
433* 1 or 2
434*
435 k = 1
436 40 CONTINUE
437*
438* If K > N, exit from loop
439*
440 IF( k.GT.n )
441 $ GO TO 70
442 kstep = 1
443*
444* Determine rows and columns to be interchanged and whether
445* a 1-by-1 or 2-by-2 pivot block will be used
446*
447 absakk = cabs1( a( k, k ) )
448*
449* IMAX is the row-index of the largest off-diagonal element in
450* column K, and COLMAX is its absolute value.
451* Determine both COLMAX and IMAX.
452*
453 IF( k.LT.n ) THEN
454 imax = k + izamax( n-k, a( k+1, k ), 1 )
455 colmax = cabs1( a( imax, k ) )
456 ELSE
457 colmax = zero
458 END IF
459*
460 IF( max( absakk, colmax ).EQ.zero .OR. disnan(absakk) ) THEN
461*
462* Column K is zero or underflow, or contains a NaN:
463* set INFO and continue
464*
465 IF( info.EQ.0 )
466 $ info = k
467 kp = k
468 ELSE
469 IF( absakk.GE.alpha*colmax ) THEN
470*
471* no interchange, use 1-by-1 pivot block
472*
473 kp = k
474 ELSE
475*
476* JMAX is the column-index of the largest off-diagonal
477* element in row IMAX, and ROWMAX is its absolute value
478*
479 jmax = k - 1 + izamax( imax-k, a( imax, k ), lda )
480 rowmax = cabs1( a( imax, jmax ) )
481 IF( imax.LT.n ) THEN
482 jmax = imax + izamax( n-imax, a( imax+1, imax ),
483 $ 1 )
484 rowmax = max( rowmax, cabs1( a( jmax, imax ) ) )
485 END IF
486*
487 IF( absakk.GE.alpha*colmax*( colmax / rowmax ) ) THEN
488*
489* no interchange, use 1-by-1 pivot block
490*
491 kp = k
492 ELSE IF( cabs1( a( imax, imax ) ).GE.alpha*rowmax ) THEN
493*
494* interchange rows and columns K and IMAX, use 1-by-1
495* pivot block
496*
497 kp = imax
498 ELSE
499*
500* interchange rows and columns K+1 and IMAX, use 2-by-2
501* pivot block
502*
503 kp = imax
504 kstep = 2
505 END IF
506 END IF
507*
508 kk = k + kstep - 1
509 IF( kp.NE.kk ) THEN
510*
511* Interchange rows and columns KK and KP in the trailing
512* submatrix A(k:n,k:n)
513*
514 IF( kp.LT.n )
515 $ CALL zswap( n-kp, a( kp+1, kk ), 1, a( kp+1, kp ),
516 $ 1 )
517 CALL zswap( kp-kk-1, a( kk+1, kk ), 1, a( kp, kk+1 ),
518 $ lda )
519 t = a( kk, kk )
520 a( kk, kk ) = a( kp, kp )
521 a( kp, kp ) = t
522 IF( kstep.EQ.2 ) THEN
523 t = a( k+1, k )
524 a( k+1, k ) = a( kp, k )
525 a( kp, k ) = t
526 END IF
527 END IF
528*
529* Update the trailing submatrix
530*
531 IF( kstep.EQ.1 ) THEN
532*
533* 1-by-1 pivot block D(k): column k now holds
534*
535* W(k) = L(k)*D(k)
536*
537* where L(k) is the k-th column of L
538*
539 IF( k.LT.n ) THEN
540*
541* Perform a rank-1 update of A(k+1:n,k+1:n) as
542*
543* A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
544*
545 r1 = cone / a( k, k )
546 CALL zsyr( uplo, n-k, -r1, a( k+1, k ), 1,
547 $ a( k+1, k+1 ), lda )
548*
549* Store L(k) in column K
550*
551 CALL zscal( n-k, r1, a( k+1, k ), 1 )
552 END IF
553 ELSE
554*
555* 2-by-2 pivot block D(k)
556*
557 IF( k.LT.n-1 ) THEN
558*
559* Perform a rank-2 update of A(k+2:n,k+2:n) as
560*
561* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
562* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
563*
564* where L(k) and L(k+1) are the k-th and (k+1)-th
565* columns of L
566*
567 d21 = a( k+1, k )
568 d11 = a( k+1, k+1 ) / d21
569 d22 = a( k, k ) / d21
570 t = cone / ( d11*d22-cone )
571 d21 = t / d21
572*
573 DO 60 j = k + 2, n
574 wk = d21*( d11*a( j, k )-a( j, k+1 ) )
575 wkp1 = d21*( d22*a( j, k+1 )-a( j, k ) )
576 DO 50 i = j, n
577 a( i, j ) = a( i, j ) - a( i, k )*wk -
578 $ a( i, k+1 )*wkp1
579 50 CONTINUE
580 a( j, k ) = wk
581 a( j, k+1 ) = wkp1
582 60 CONTINUE
583 END IF
584 END IF
585 END IF
586*
587* Store details of the interchanges in IPIV
588*
589 IF( kstep.EQ.1 ) THEN
590 ipiv( k ) = kp
591 ELSE
592 ipiv( k ) = -kp
593 ipiv( k+1 ) = -kp
594 END IF
595*
596* Increase K and return to the start of the main loop
597*
598 k = k + kstep
599 GO TO 40
600*
601 END IF
602*
603 70 CONTINUE
604 RETURN
605*
606* End of ZSYTF2
607*
608 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zsyr(uplo, n, alpha, x, incx, a, lda)
ZSYR performs the symmetric rank-1 update of a complex symmetric matrix.
Definition zsyr.f:133
subroutine zsytf2(uplo, n, a, lda, ipiv, info)
ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition zsytf2.f:189
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
subroutine zswap(n, zx, incx, zy, incy)
ZSWAP
Definition zswap.f:81