LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cerrhex.f
Go to the documentation of this file.
1*> \brief \b CERRHEX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CERRHE( PATH, NUNIT )
12*
13* .. Scalar Arguments ..
14* CHARACTER*3 PATH
15* INTEGER NUNIT
16* ..
17*
18*
19*> \par Purpose:
20* =============
21*>
22*> \verbatim
23*>
24*> CERRHE tests the error exits for the COMPLEX routines
25*> for Hermitian indefinite matrices.
26*>
27*> Note that this file is used only when the XBLAS are available,
28*> otherwise cerrhe.f defines this subroutine.
29*> \endverbatim
30*
31* Arguments:
32* ==========
33*
34*> \param[in] PATH
35*> \verbatim
36*> PATH is CHARACTER*3
37*> The LAPACK path name for the routines to be tested.
38*> \endverbatim
39*>
40*> \param[in] NUNIT
41*> \verbatim
42*> NUNIT is INTEGER
43*> The unit number for output.
44*> \endverbatim
45*
46* Authors:
47* ========
48*
49*> \author Univ. of Tennessee
50*> \author Univ. of California Berkeley
51*> \author Univ. of Colorado Denver
52*> \author NAG Ltd.
53*
54*> \ingroup complex_lin
55*
56* =====================================================================
57 SUBROUTINE cerrhe( PATH, NUNIT )
58*
59* -- LAPACK test routine --
60* -- LAPACK is a software package provided by Univ. of Tennessee, --
61* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62*
63* .. Scalar Arguments ..
64 CHARACTER*3 PATH
65 INTEGER NUNIT
66* ..
67*
68* =====================================================================
69*
70*
71* .. Parameters ..
72 INTEGER NMAX
73 parameter( nmax = 4 )
74* ..
75* .. Local Scalars ..
76 CHARACTER EQ
77 CHARACTER*2 C2
78 INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
79 REAL ANRM, RCOND, BERR
80* ..
81* .. Local Arrays ..
82 INTEGER IP( NMAX )
83 REAL R( NMAX ), R1( NMAX ), R2( NMAX ),
84 $ S( NMAX ), ERR_BNDS_N( NMAX, 3 ),
85 $ ERR_BNDS_C( NMAX, 3 ), PARAMS( 1 )
86 COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
87 $ E( NMAX ), W( 2*NMAX ), X( NMAX )
88* ..
89* .. External Functions ..
90 LOGICAL LSAMEN
91 EXTERNAL lsamen
92* ..
93* .. External Subroutines ..
100* ..
101* .. Scalars in Common ..
102 LOGICAL LERR, OK
103 CHARACTER*32 SRNAMT
104 INTEGER INFOT, NOUT
105* ..
106* .. Common blocks ..
107 COMMON / infoc / infot, nout, ok, lerr
108 COMMON / srnamc / srnamt
109* ..
110* .. Intrinsic Functions ..
111 INTRINSIC cmplx, real
112* ..
113* .. Executable Statements ..
114*
115 nout = nunit
116 WRITE( nout, fmt = * )
117 c2 = path( 2: 3 )
118*
119* Set the variables to innocuous values.
120*
121 DO 20 j = 1, nmax
122 DO 10 i = 1, nmax
123 a( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
124 af( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
125 10 CONTINUE
126 b( j ) = 0.e+0
127 e( j ) = 0.e+0
128 r1( j ) = 0.e+0
129 r2( j ) = 0.e+0
130 w( j ) = 0.e+0
131 x( j ) = 0.e+0
132 ip( j ) = j
133 20 CONTINUE
134 anrm = 1.0
135 ok = .true.
136*
137 IF( lsamen( 2, c2, 'HE' ) ) THEN
138*
139* Test error exits of the routines that use factorization
140* of a Hermitian indefinite matrix with partial
141* (Bunch-Kaufman) diagonal pivoting method.
142*
143* CHETRF
144*
145 srnamt = 'CHETRF'
146 infot = 1
147 CALL chetrf( '/', 0, a, 1, ip, w, 1, info )
148 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
149 infot = 2
150 CALL chetrf( 'U', -1, a, 1, ip, w, 1, info )
151 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
152 infot = 4
153 CALL chetrf( 'U', 2, a, 1, ip, w, 4, info )
154 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
155 infot = 7
156 CALL chetrf( 'U', 0, a, 1, ip, w, 0, info )
157 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
158 infot = 7
159 CALL chetrf( 'U', 0, a, 1, ip, w, -2, info )
160 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
161*
162* CHETF2
163*
164 srnamt = 'CHETF2'
165 infot = 1
166 CALL chetf2( '/', 0, a, 1, ip, info )
167 CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
168 infot = 2
169 CALL chetf2( 'U', -1, a, 1, ip, info )
170 CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
171 infot = 4
172 CALL chetf2( 'U', 2, a, 1, ip, info )
173 CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
174*
175* CHETRI
176*
177 srnamt = 'CHETRI'
178 infot = 1
179 CALL chetri( '/', 0, a, 1, ip, w, info )
180 CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
181 infot = 2
182 CALL chetri( 'U', -1, a, 1, ip, w, info )
183 CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
184 infot = 4
185 CALL chetri( 'U', 2, a, 1, ip, w, info )
186 CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
187*
188* CHETRI2
189*
190 srnamt = 'CHETRI2'
191 infot = 1
192 CALL chetri2( '/', 0, a, 1, ip, w, 1, info )
193 CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
194 infot = 2
195 CALL chetri2( 'U', -1, a, 1, ip, w, 1, info )
196 CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
197 infot = 4
198 CALL chetri2( 'U', 2, a, 1, ip, w, 1, info )
199 CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
200*
201* CHETRI2X
202*
203 srnamt = 'CHETRI2X'
204 infot = 1
205 CALL chetri2x( '/', 0, a, 1, ip, w, 1, info )
206 CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
207 infot = 2
208 CALL chetri2x( 'U', -1, a, 1, ip, w, 1, info )
209 CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
210 infot = 4
211 CALL chetri2x( 'U', 2, a, 1, ip, w, 1, info )
212 CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
213*
214* CHETRS
215*
216 srnamt = 'CHETRS'
217 infot = 1
218 CALL chetrs( '/', 0, 0, a, 1, ip, b, 1, info )
219 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
220 infot = 2
221 CALL chetrs( 'U', -1, 0, a, 1, ip, b, 1, info )
222 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
223 infot = 3
224 CALL chetrs( 'U', 0, -1, a, 1, ip, b, 1, info )
225 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
226 infot = 5
227 CALL chetrs( 'U', 2, 1, a, 1, ip, b, 2, info )
228 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
229 infot = 8
230 CALL chetrs( 'U', 2, 1, a, 2, ip, b, 1, info )
231 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
232*
233* CHERFS
234*
235 srnamt = 'CHERFS'
236 infot = 1
237 CALL cherfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
238 $ r, info )
239 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
240 infot = 2
241 CALL cherfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
242 $ w, r, info )
243 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
244 infot = 3
245 CALL cherfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
246 $ w, r, info )
247 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
248 infot = 5
249 CALL cherfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
250 $ r, info )
251 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
252 infot = 7
253 CALL cherfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
254 $ r, info )
255 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
256 infot = 10
257 CALL cherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
258 $ r, info )
259 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
260 infot = 12
261 CALL cherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
262 $ r, info )
263 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
264*
265* CHECON
266*
267 srnamt = 'CHECON'
268 infot = 1
269 CALL checon( '/', 0, a, 1, ip, anrm, rcond, w, info )
270 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
271 infot = 2
272 CALL checon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
273 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
274 infot = 4
275 CALL checon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
276 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
277 infot = 6
278 CALL checon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
279 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
280*
281* CHERFSX
282*
283 n_err_bnds = 3
284 nparams = 0
285 srnamt = 'CHERFSX'
286 infot = 1
287 CALL cherfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
288 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
289 $ params, w, r, info )
290 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
291 infot = 2
292 CALL cherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
293 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
294 $ params, w, r, info )
295 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
296 eq = 'N'
297 infot = 3
298 CALL cherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
299 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
300 $ params, w, r, info )
301 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
302 infot = 4
303 CALL cherfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
304 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
305 $ params, w, r, info )
306 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
307 infot = 6
308 CALL cherfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
309 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
310 $ params, w, r, info )
311 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
312 infot = 8
313 CALL cherfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
314 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
315 $ params, w, r, info )
316 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
317 infot = 12
318 CALL cherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
319 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
320 $ params, w, r, info )
321 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
322 infot = 14
323 CALL cherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
324 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
325 $ params, w, r, info )
326 CALL chkxer( 'CHERFSX', infot, nout, lerr, ok )
327*
328 ELSE IF( lsamen( 2, c2, 'HR' ) ) THEN
329*
330* Test error exits of the routines that use factorization
331* of a Hermitian indefinite matrix with rook
332* (bounded Bunch-Kaufman) diagonal pivoting method.
333*
334* CHETRF_ROOK
335*
336 srnamt = 'CHETRF_ROOK'
337 infot = 1
338 CALL chetrf_rook( '/', 0, a, 1, ip, w, 1, info )
339 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
340 infot = 2
341 CALL chetrf_rook( 'U', -1, a, 1, ip, w, 1, info )
342 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
343 infot = 4
344 CALL chetrf_rook( 'U', 2, a, 1, ip, w, 4, info )
345 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
346 infot = 7
347 CALL chetrf_rook( 'U', 0, a, 1, ip, w, 0, info )
348 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
349 infot = 7
350 CALL chetrf_rook( 'U', 0, a, 1, ip, w, -2, info )
351 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
352*
353* CHETF2_ROOK
354*
355 srnamt = 'CHETF2_ROOK'
356 infot = 1
357 CALL chetf2_rook( '/', 0, a, 1, ip, info )
358 CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
359 infot = 2
360 CALL chetf2_rook( 'U', -1, a, 1, ip, info )
361 CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
362 infot = 4
363 CALL chetf2_rook( 'U', 2, a, 1, ip, info )
364 CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
365*
366* CHETRI_ROOK
367*
368 srnamt = 'CHETRI_ROOK'
369 infot = 1
370 CALL chetri_rook( '/', 0, a, 1, ip, w, info )
371 CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
372 infot = 2
373 CALL chetri_rook( 'U', -1, a, 1, ip, w, info )
374 CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
375 infot = 4
376 CALL chetri_rook( 'U', 2, a, 1, ip, w, info )
377 CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
378*
379* CHETRS_ROOK
380*
381 srnamt = 'CHETRS_ROOK'
382 infot = 1
383 CALL chetrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
384 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
385 infot = 2
386 CALL chetrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
387 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
388 infot = 3
389 CALL chetrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
390 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
391 infot = 5
392 CALL chetrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
393 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
394 infot = 8
395 CALL chetrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
396 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
397*
398* CHECON_ROOK
399*
400 srnamt = 'CHECON_ROOK'
401 infot = 1
402 CALL checon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
403 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
404 infot = 2
405 CALL checon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
406 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
407 infot = 4
408 CALL checon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
409 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
410 infot = 6
411 CALL checon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
412 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
413*
414 ELSE IF( lsamen( 2, c2, 'HK' ) ) THEN
415*
416* Test error exits of the routines that use factorization
417* of a Hermitian indefinite matrix with rook
418* (bounded Bunch-Kaufman) pivoting with the new storage
419* format for factors L ( or U) and D.
420*
421* L (or U) is stored in A, diagonal of D is stored on the
422* diagonal of A, subdiagonal of D is stored in a separate array E.
423*
424* CHETRF_RK
425*
426 srnamt = 'CHETRF_RK'
427 infot = 1
428 CALL chetrf_rk( '/', 0, a, 1, e, ip, w, 1, info )
429 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
430 infot = 2
431 CALL chetrf_rk( 'U', -1, a, 1, e, ip, w, 1, info )
432 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
433 infot = 4
434 CALL chetrf_rk( 'U', 2, a, 1, e, ip, w, 4, info )
435 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
436 infot = 8
437 CALL chetrf_rk( 'U', 0, a, 1, e, ip, w, 0, info )
438 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
439 infot = 8
440 CALL chetrf_rk( 'U', 0, a, 1, e, ip, w, -2, info )
441 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
442*
443* CHETF2_RK
444*
445 srnamt = 'CHETF2_RK'
446 infot = 1
447 CALL chetf2_rk( '/', 0, a, 1, e, ip, info )
448 CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
449 infot = 2
450 CALL chetf2_rk( 'U', -1, a, 1, e, ip, info )
451 CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
452 infot = 4
453 CALL chetf2_rk( 'U', 2, a, 1, e, ip, info )
454 CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
455*
456* CHETRI_3
457*
458 srnamt = 'CHETRI_3'
459 infot = 1
460 CALL chetri_3( '/', 0, a, 1, e, ip, w, 1, info )
461 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
462 infot = 2
463 CALL chetri_3( 'U', -1, a, 1, e, ip, w, 1, info )
464 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
465 infot = 4
466 CALL chetri_3( 'U', 2, a, 1, e, ip, w, 1, info )
467 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
468 infot = 8
469 CALL chetri_3( 'U', 0, a, 1, e, ip, w, 0, info )
470 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
471 infot = 8
472 CALL chetri_3( 'U', 0, a, 1, e, ip, w, -2, info )
473 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
474*
475* CHETRI_3X
476*
477 srnamt = 'CHETRI_3X'
478 infot = 1
479 CALL chetri_3x( '/', 0, a, 1, e, ip, w, 1, info )
480 CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
481 infot = 2
482 CALL chetri_3x( 'U', -1, a, 1, e, ip, w, 1, info )
483 CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
484 infot = 4
485 CALL chetri_3x( 'U', 2, a, 1, e, ip, w, 1, info )
486 CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
487*
488* CHETRS_3
489*
490 srnamt = 'CHETRS_3'
491 infot = 1
492 CALL chetrs_3( '/', 0, 0, a, 1, e, ip, b, 1, info )
493 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
494 infot = 2
495 CALL chetrs_3( 'U', -1, 0, a, 1, e, ip, b, 1, info )
496 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
497 infot = 3
498 CALL chetrs_3( 'U', 0, -1, a, 1, e, ip, b, 1, info )
499 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
500 infot = 5
501 CALL chetrs_3( 'U', 2, 1, a, 1, e, ip, b, 2, info )
502 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
503 infot = 9
504 CALL chetrs_3( 'U', 2, 1, a, 2, e, ip, b, 1, info )
505 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
506*
507* CHECON_3
508*
509 srnamt = 'CHECON_3'
510 infot = 1
511 CALL checon_3( '/', 0, a, 1, e, ip, anrm, rcond, w, info )
512 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
513 infot = 2
514 CALL checon_3( 'U', -1, a, 1, e, ip, anrm, rcond, w, info )
515 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
516 infot = 4
517 CALL checon_3( 'U', 2, a, 1, e, ip, anrm, rcond, w, info )
518 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
519 infot = 7
520 CALL checon_3( 'U', 1, a, 1, e, ip, -1.0e0, rcond, w, info)
521 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
522*
523 ELSE IF( lsamen( 2, c2, 'HP' ) ) THEN
524*
525* Test error exits of the routines that use factorization
526* of a Hermitian indefinite packed matrix with partial
527* (Bunch-Kaufman) diagonal pivoting method.
528*
529* CHPTRF
530*
531 srnamt = 'CHPTRF'
532 infot = 1
533 CALL chptrf( '/', 0, a, ip, info )
534 CALL chkxer( 'CHPTRF', infot, nout, lerr, ok )
535 infot = 2
536 CALL chptrf( 'U', -1, a, ip, info )
537 CALL chkxer( 'CHPTRF', infot, nout, lerr, ok )
538*
539* CHPTRI
540*
541 srnamt = 'CHPTRI'
542 infot = 1
543 CALL chptri( '/', 0, a, ip, w, info )
544 CALL chkxer( 'CHPTRI', infot, nout, lerr, ok )
545 infot = 2
546 CALL chptri( 'U', -1, a, ip, w, info )
547 CALL chkxer( 'CHPTRI', infot, nout, lerr, ok )
548*
549* CHPTRS
550*
551 srnamt = 'CHPTRS'
552 infot = 1
553 CALL chptrs( '/', 0, 0, a, ip, b, 1, info )
554 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
555 infot = 2
556 CALL chptrs( 'U', -1, 0, a, ip, b, 1, info )
557 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
558 infot = 3
559 CALL chptrs( 'U', 0, -1, a, ip, b, 1, info )
560 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
561 infot = 7
562 CALL chptrs( 'U', 2, 1, a, ip, b, 1, info )
563 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
564*
565* CHPRFS
566*
567 srnamt = 'CHPRFS'
568 infot = 1
569 CALL chprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
570 $ info )
571 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
572 infot = 2
573 CALL chprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
574 $ info )
575 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
576 infot = 3
577 CALL chprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
578 $ info )
579 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
580 infot = 8
581 CALL chprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
582 $ info )
583 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
584 infot = 10
585 CALL chprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
586 $ info )
587 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
588*
589* CHPCON
590*
591 srnamt = 'CHPCON'
592 infot = 1
593 CALL chpcon( '/', 0, a, ip, anrm, rcond, w, info )
594 CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
595 infot = 2
596 CALL chpcon( 'U', -1, a, ip, anrm, rcond, w, info )
597 CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
598 infot = 5
599 CALL chpcon( 'U', 1, a, ip, -anrm, rcond, w, info )
600 CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
601 END IF
602*
603* Print a summary line.
604*
605 CALL alaesm( path, ok, nout )
606*
607 RETURN
608*
609* End of CERRHEX
610*
611 END
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine cerrhe(path, nunit)
CERRHE
Definition cerrhe.f:55
subroutine checon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)
CHECON_3
Definition checon_3.f:164
subroutine checon_rook(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
CHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obt...
subroutine checon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
CHECON
Definition checon.f:123
subroutine cherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CHERFS
Definition cherfs.f:191
subroutine cherfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CHERFSX
Definition cherfsx.f:400
subroutine chetf2_rk(uplo, n, a, lda, e, ipiv, info)
CHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition chetf2_rk.f:239
subroutine chetf2_rook(uplo, n, a, lda, ipiv, info)
CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
subroutine chetf2(uplo, n, a, lda, ipiv, info)
CHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition chetf2.f:184
subroutine chetrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition chetrf_rk.f:257
subroutine chetrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
subroutine chetrf(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRF
Definition chetrf.f:175
subroutine chetri2(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRI2
Definition chetri2.f:125
subroutine chetri2x(uplo, n, a, lda, ipiv, work, nb, info)
CHETRI2X
Definition chetri2x.f:118
subroutine chetri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
CHETRI_3
Definition chetri_3.f:169
subroutine chetri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
CHETRI_3X
Definition chetri_3x.f:158
subroutine chetri_rook(uplo, n, a, lda, ipiv, work, info)
CHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
subroutine chetri(uplo, n, a, lda, ipiv, work, info)
CHETRI
Definition chetri.f:112
subroutine chetrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
CHETRS_3
Definition chetrs_3.f:163
subroutine chetrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
Definition chetrs.f:118
subroutine chpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)
CHPCON
Definition chpcon.f:117
subroutine chprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CHPRFS
Definition chprfs.f:179
subroutine chptrf(uplo, n, ap, ipiv, info)
CHPTRF
Definition chptrf.f:157
subroutine chptri(uplo, n, ap, ipiv, work, info)
CHPTRI
Definition chptri.f:107
subroutine chptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
CHPTRS
Definition chptrs.f:113