LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cerrhe()

subroutine cerrhe ( character*3 path,
integer nunit )

CERRHE

Purpose:
!>
!> CERRHE tests the error exits for the COMPLEX routines
!> for Hermitian indefinite matrices.
!> 
Parameters
[in]PATH
!>          PATH is CHARACTER*3
!>          The LAPACK path name for the routines to be tested.
!> 
[in]NUNIT
!>          NUNIT is INTEGER
!>          The unit number for output.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 54 of file cerrhe.f.

55*
56* -- LAPACK test routine --
57* -- LAPACK is a software package provided by Univ. of Tennessee, --
58* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
59*
60* .. Scalar Arguments ..
61 CHARACTER*3 PATH
62 INTEGER NUNIT
63* ..
64*
65* =====================================================================
66*
67*
68* .. Parameters ..
69 INTEGER NMAX
70 parameter( nmax = 4 )
71* ..
72* .. Local Scalars ..
73 CHARACTER*2 C2
74 INTEGER I, INFO, J
75 REAL ANRM, RCOND
76* ..
77* .. Local Arrays ..
78 INTEGER IP( NMAX )
79 REAL R( NMAX ), R1( NMAX ), R2( NMAX )
80 COMPLEX A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
81 $ E( NMAX ), W( 2*NMAX ), X( NMAX )
82* ..
83* .. External Functions ..
84 LOGICAL LSAMEN
85 EXTERNAL lsamen
86* ..
87* .. External Subroutines ..
95 $ chptri, chptrs
96* ..
97* .. Scalars in Common ..
98 LOGICAL LERR, OK
99 CHARACTER*32 SRNAMT
100 INTEGER INFOT, NOUT
101* ..
102* .. Common blocks ..
103 COMMON / infoc / infot, nout, ok, lerr
104 COMMON / srnamc / srnamt
105* ..
106* .. Intrinsic Functions ..
107 INTRINSIC cmplx, real
108* ..
109* .. Executable Statements ..
110*
111 nout = nunit
112 WRITE( nout, fmt = * )
113 c2 = path( 2: 3 )
114*
115* Set the variables to innocuous values.
116*
117 DO 20 j = 1, nmax
118 DO 10 i = 1, nmax
119 a( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
120 af( i, j ) = cmplx( 1. / real( i+j ), -1. / real( i+j ) )
121 10 CONTINUE
122 b( j ) = 0.e+0
123 e( j ) = 0.e+0
124 r1( j ) = 0.e+0
125 r2( j ) = 0.e+0
126 w( j ) = 0.e+0
127 x( j ) = 0.e+0
128 ip( j ) = j
129 20 CONTINUE
130 anrm = 1.0
131 ok = .true.
132*
133 IF( lsamen( 2, c2, 'HE' ) ) THEN
134*
135* Test error exits of the routines that use factorization
136* of a Hermitian indefinite matrix with partial
137* (Bunch-Kaufman) diagonal pivoting method.
138*
139* CHETRF
140*
141 srnamt = 'CHETRF'
142 infot = 1
143 CALL chetrf( '/', 0, a, 1, ip, w, 1, info )
144 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
145 infot = 2
146 CALL chetrf( 'U', -1, a, 1, ip, w, 1, info )
147 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
148 infot = 4
149 CALL chetrf( 'U', 2, a, 1, ip, w, 4, info )
150 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
151 infot = 7
152 CALL chetrf( 'U', 0, a, 1, ip, w, 0, info )
153 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
154 infot = 7
155 CALL chetrf( 'U', 0, a, 1, ip, w, -2, info )
156 CALL chkxer( 'CHETRF', infot, nout, lerr, ok )
157*
158* CHETF2
159*
160 srnamt = 'CHETF2'
161 infot = 1
162 CALL chetf2( '/', 0, a, 1, ip, info )
163 CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
164 infot = 2
165 CALL chetf2( 'U', -1, a, 1, ip, info )
166 CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
167 infot = 4
168 CALL chetf2( 'U', 2, a, 1, ip, info )
169 CALL chkxer( 'CHETF2', infot, nout, lerr, ok )
170*
171* CHETRI
172*
173 srnamt = 'CHETRI'
174 infot = 1
175 CALL chetri( '/', 0, a, 1, ip, w, info )
176 CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
177 infot = 2
178 CALL chetri( 'U', -1, a, 1, ip, w, info )
179 CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
180 infot = 4
181 CALL chetri( 'U', 2, a, 1, ip, w, info )
182 CALL chkxer( 'CHETRI', infot, nout, lerr, ok )
183*
184* CHETRI2
185*
186 srnamt = 'CHETRI2'
187 infot = 1
188 CALL chetri2( '/', 0, a, 1, ip, w, 1, info )
189 CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
190 infot = 2
191 CALL chetri2( 'U', -1, a, 1, ip, w, 1, info )
192 CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
193 infot = 4
194 CALL chetri2( 'U', 2, a, 1, ip, w, 1, info )
195 CALL chkxer( 'CHETRI2', infot, nout, lerr, ok )
196*
197* CHETRI2X
198*
199 srnamt = 'CHETRI2X'
200 infot = 1
201 CALL chetri2x( '/', 0, a, 1, ip, w, 1, info )
202 CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
203 infot = 2
204 CALL chetri2x( 'U', -1, a, 1, ip, w, 1, info )
205 CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
206 infot = 4
207 CALL chetri2x( 'U', 2, a, 1, ip, w, 1, info )
208 CALL chkxer( 'CHETRI2X', infot, nout, lerr, ok )
209*
210* CHETRS
211*
212 srnamt = 'CHETRS'
213 infot = 1
214 CALL chetrs( '/', 0, 0, a, 1, ip, b, 1, info )
215 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
216 infot = 2
217 CALL chetrs( 'U', -1, 0, a, 1, ip, b, 1, info )
218 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
219 infot = 3
220 CALL chetrs( 'U', 0, -1, a, 1, ip, b, 1, info )
221 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
222 infot = 5
223 CALL chetrs( 'U', 2, 1, a, 1, ip, b, 2, info )
224 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
225 infot = 8
226 CALL chetrs( 'U', 2, 1, a, 2, ip, b, 1, info )
227 CALL chkxer( 'CHETRS', infot, nout, lerr, ok )
228*
229* CHERFS
230*
231 srnamt = 'CHERFS'
232 infot = 1
233 CALL cherfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
234 $ r, info )
235 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
236 infot = 2
237 CALL cherfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
238 $ w, r, info )
239 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
240 infot = 3
241 CALL cherfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
242 $ w, r, info )
243 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
244 infot = 5
245 CALL cherfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
246 $ r, info )
247 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
248 infot = 7
249 CALL cherfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
250 $ r, info )
251 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
252 infot = 10
253 CALL cherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
254 $ r, info )
255 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
256 infot = 12
257 CALL cherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
258 $ r, info )
259 CALL chkxer( 'CHERFS', infot, nout, lerr, ok )
260*
261* CHECON
262*
263 srnamt = 'CHECON'
264 infot = 1
265 CALL checon( '/', 0, a, 1, ip, anrm, rcond, w, info )
266 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
267 infot = 2
268 CALL checon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
269 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
270 infot = 4
271 CALL checon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
272 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
273 infot = 6
274 CALL checon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
275 CALL chkxer( 'CHECON', infot, nout, lerr, ok )
276*
277 ELSE IF( lsamen( 2, c2, 'HR' ) ) THEN
278*
279* Test error exits of the routines that use factorization
280* of a Hermitian indefinite matrix with rook
281* (bounded Bunch-Kaufman) diagonal pivoting method.
282*
283* CHETRF_ROOK
284*
285 srnamt = 'CHETRF_ROOK'
286 infot = 1
287 CALL chetrf_rook( '/', 0, a, 1, ip, w, 1, info )
288 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
289 infot = 2
290 CALL chetrf_rook( 'U', -1, a, 1, ip, w, 1, info )
291 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
292 infot = 4
293 CALL chetrf_rook( 'U', 2, a, 1, ip, w, 4, info )
294 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
295 infot = 7
296 CALL chetrf_rook( 'U', 0, a, 1, ip, w, 0, info )
297 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
298 infot = 7
299 CALL chetrf_rook( 'U', 0, a, 1, ip, w, -2, info )
300 CALL chkxer( 'CHETRF_ROOK', infot, nout, lerr, ok )
301*
302* CHETF2_ROOK
303*
304 srnamt = 'CHETF2_ROOK'
305 infot = 1
306 CALL chetf2_rook( '/', 0, a, 1, ip, info )
307 CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
308 infot = 2
309 CALL chetf2_rook( 'U', -1, a, 1, ip, info )
310 CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
311 infot = 4
312 CALL chetf2_rook( 'U', 2, a, 1, ip, info )
313 CALL chkxer( 'CHETF2_ROOK', infot, nout, lerr, ok )
314*
315* CHETRI_ROOK
316*
317 srnamt = 'CHETRI_ROOK'
318 infot = 1
319 CALL chetri_rook( '/', 0, a, 1, ip, w, info )
320 CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
321 infot = 2
322 CALL chetri_rook( 'U', -1, a, 1, ip, w, info )
323 CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
324 infot = 4
325 CALL chetri_rook( 'U', 2, a, 1, ip, w, info )
326 CALL chkxer( 'CHETRI_ROOK', infot, nout, lerr, ok )
327*
328* CHETRS_ROOK
329*
330 srnamt = 'CHETRS_ROOK'
331 infot = 1
332 CALL chetrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
333 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
334 infot = 2
335 CALL chetrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
336 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
337 infot = 3
338 CALL chetrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
339 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
340 infot = 5
341 CALL chetrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
342 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
343 infot = 8
344 CALL chetrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
345 CALL chkxer( 'CHETRS_ROOK', infot, nout, lerr, ok )
346*
347* CHECON_ROOK
348*
349 srnamt = 'CHECON_ROOK'
350 infot = 1
351 CALL checon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
352 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
353 infot = 2
354 CALL checon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
355 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
356 infot = 4
357 CALL checon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
358 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
359 infot = 6
360 CALL checon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
361 CALL chkxer( 'CHECON_ROOK', infot, nout, lerr, ok )
362*
363 ELSE IF( lsamen( 2, c2, 'HK' ) ) THEN
364*
365* Test error exits of the routines that use factorization
366* of a Hermitian indefinite matrix with rook
367* (bounded Bunch-Kaufman) pivoting with the new storage
368* format for factors L ( or U) and D.
369*
370* L (or U) is stored in A, diagonal of D is stored on the
371* diagonal of A, subdiagonal of D is stored in a separate array E.
372*
373* CHETRF_RK
374*
375 srnamt = 'CHETRF_RK'
376 infot = 1
377 CALL chetrf_rk( '/', 0, a, 1, e, ip, w, 1, info )
378 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
379 infot = 2
380 CALL chetrf_rk( 'U', -1, a, 1, e, ip, w, 1, info )
381 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
382 infot = 4
383 CALL chetrf_rk( 'U', 2, a, 1, e, ip, w, 4, info )
384 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
385 infot = 8
386 CALL chetrf_rk( 'U', 0, a, 1, e, ip, w, 0, info )
387 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
388 infot = 8
389 CALL chetrf_rk( 'U', 0, a, 1, e, ip, w, -2, info )
390 CALL chkxer( 'CHETRF_RK', infot, nout, lerr, ok )
391*
392* CHETF2_RK
393*
394 srnamt = 'CHETF2_RK'
395 infot = 1
396 CALL chetf2_rk( '/', 0, a, 1, e, ip, info )
397 CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
398 infot = 2
399 CALL chetf2_rk( 'U', -1, a, 1, e, ip, info )
400 CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
401 infot = 4
402 CALL chetf2_rk( 'U', 2, a, 1, e, ip, info )
403 CALL chkxer( 'CHETF2_RK', infot, nout, lerr, ok )
404*
405* CHETRI_3
406*
407 srnamt = 'CHETRI_3'
408 infot = 1
409 CALL chetri_3( '/', 0, a, 1, e, ip, w, 1, info )
410 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
411 infot = 2
412 CALL chetri_3( 'U', -1, a, 1, e, ip, w, 1, info )
413 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
414 infot = 4
415 CALL chetri_3( 'U', 2, a, 1, e, ip, w, 1, info )
416 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
417 infot = 8
418 CALL chetri_3( 'U', 0, a, 1, e, ip, w, 0, info )
419 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
420 infot = 8
421 CALL chetri_3( 'U', 0, a, 1, e, ip, w, -2, info )
422 CALL chkxer( 'CHETRI_3', infot, nout, lerr, ok )
423*
424* CHETRI_3X
425*
426 srnamt = 'CHETRI_3X'
427 infot = 1
428 CALL chetri_3x( '/', 0, a, 1, e, ip, w, 1, info )
429 CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
430 infot = 2
431 CALL chetri_3x( 'U', -1, a, 1, e, ip, w, 1, info )
432 CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
433 infot = 4
434 CALL chetri_3x( 'U', 2, a, 1, e, ip, w, 1, info )
435 CALL chkxer( 'CHETRI_3X', infot, nout, lerr, ok )
436*
437* CHETRS_3
438*
439 srnamt = 'CHETRS_3'
440 infot = 1
441 CALL chetrs_3( '/', 0, 0, a, 1, e, ip, b, 1, info )
442 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
443 infot = 2
444 CALL chetrs_3( 'U', -1, 0, a, 1, e, ip, b, 1, info )
445 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
446 infot = 3
447 CALL chetrs_3( 'U', 0, -1, a, 1, e, ip, b, 1, info )
448 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
449 infot = 5
450 CALL chetrs_3( 'U', 2, 1, a, 1, e, ip, b, 2, info )
451 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
452 infot = 9
453 CALL chetrs_3( 'U', 2, 1, a, 2, e, ip, b, 1, info )
454 CALL chkxer( 'CHETRS_3', infot, nout, lerr, ok )
455*
456* CHECON_3
457*
458 srnamt = 'CHECON_3'
459 infot = 1
460 CALL checon_3( '/', 0, a, 1, e, ip, anrm, rcond, w, info )
461 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
462 infot = 2
463 CALL checon_3( 'U', -1, a, 1, e, ip, anrm, rcond, w, info )
464 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
465 infot = 4
466 CALL checon_3( 'U', 2, a, 1, e, ip, anrm, rcond, w, info )
467 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
468 infot = 7
469 CALL checon_3( 'U', 1, a, 1, e, ip, -1.0e0, rcond, w, info)
470 CALL chkxer( 'CHECON_3', infot, nout, lerr, ok )
471*
472 ELSE IF( lsamen( 2, c2, 'HA' ) ) THEN
473*
474* Test error exits of the routines that use factorization
475* of a Hermitian indefinite matrix with Aasen's algorithm.
476*
477* CHETRF_AA
478*
479 srnamt = 'CHETRF_AA'
480 infot = 1
481 CALL chetrf_aa( '/', 0, a, 1, ip, w, 1, info )
482 CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
483 infot = 2
484 CALL chetrf_aa( 'U', -1, a, 1, ip, w, 1, info )
485 CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
486 infot = 4
487 CALL chetrf_aa( 'U', 2, a, 1, ip, w, 4, info )
488 CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
489 infot = 7
490 CALL chetrf_aa( 'U', 2, a, 2, ip, w, 0, info )
491 CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
492 infot = 7
493 CALL chetrf_aa( 'U', 2, a, 2, ip, w, -2, info )
494 CALL chkxer( 'CHETRF_AA', infot, nout, lerr, ok )
495*
496* CHETRS_AA
497*
498 srnamt = 'CHETRS_AA'
499 infot = 1
500 CALL chetrs_aa( '/', 0, 0, a, 1, ip, b, 1, w, 1, info )
501 CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
502 infot = 2
503 CALL chetrs_aa( 'U', -1, 0, a, 1, ip, b, 1, w, 1, info )
504 CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
505 infot = 3
506 CALL chetrs_aa( 'U', 0, -1, a, 1, ip, b, 1, w, 1, info )
507 CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
508 infot = 5
509 CALL chetrs_aa( 'U', 2, 1, a, 1, ip, b, 2, w, 1, info )
510 CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
511 infot = 8
512 CALL chetrs_aa( 'U', 2, 1, a, 2, ip, b, 1, w, 1, info )
513 CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
514 infot = 10
515 CALL chetrs_aa( 'U', 2, 1, a, 2, ip, b, 2, w, 0, info )
516 CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
517 infot = 10
518 CALL chetrs_aa( 'U', 2, 1, a, 2, ip, b, 2, w, -2, info )
519 CALL chkxer( 'CHETRS_AA', infot, nout, lerr, ok )
520*
521 ELSE IF( lsamen( 2, c2, 'H2' ) ) THEN
522*
523* Test error exits of the routines that use factorization
524* of a symmetric indefinite matrix with Aasen's algorithm.
525*
526* CHETRF_AA_2STAGE
527*
528 srnamt = 'CHETRF_AA_2STAGE'
529 infot = 1
530 CALL chetrf_aa_2stage( '/', 0, a, 1, a, 1, ip, ip, w, 1,
531 $ info )
532 CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
533 infot = 2
534 CALL chetrf_aa_2stage( 'U', -1, a, 1, a, 1, ip, ip, w, 1,
535 $ info )
536 CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
537 infot = 4
538 CALL chetrf_aa_2stage( 'U', 2, a, 1, a, 2, ip, ip, w, 1,
539 $ info )
540 CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
541 infot = 6
542 CALL chetrf_aa_2stage( 'U', 2, a, 2, a, 1, ip, ip, w, 1,
543 $ info )
544 CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
545 infot = 10
546 CALL chetrf_aa_2stage( 'U', 2, a, 2, a, 8, ip, ip, w, 0,
547 $ info )
548 CALL chkxer( 'CHETRF_AA_2STAGE', infot, nout, lerr, ok )
549*
550* CHETRS_AA_2STAGE
551*
552 srnamt = 'CHETRS_AA_2STAGE'
553 infot = 1
554 CALL chetrs_aa_2stage( '/', 0, 0, a, 1, a, 1, ip, ip,
555 $ b, 1, info )
556 CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
557 infot = 2
558 CALL chetrs_aa_2stage( 'U', -1, 0, a, 1, a, 1, ip, ip,
559 $ b, 1, info )
560 CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
561 infot = 3
562 CALL chetrs_aa_2stage( 'U', 0, -1, a, 1, a, 1, ip, ip,
563 $ b, 1, info )
564 CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
565 infot = 5
566 CALL chetrs_aa_2stage( 'U', 2, 1, a, 1, a, 1, ip, ip,
567 $ b, 1, info )
568 CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
569 infot = 7
570 CALL chetrs_aa_2stage( 'U', 2, 1, a, 2, a, 1, ip, ip,
571 $ b, 1, info )
572 CALL chkxer( 'CHETRS_AA_2STAGE', infot, nout, lerr, ok )
573 infot = 11
574 CALL chetrs_aa_2stage( 'U', 2, 1, a, 2, a, 8, ip, ip,
575 $ b, 1, info )
576 CALL chkxer( 'CHETRS_AA_STAGE', infot, nout, lerr, ok )
577*
578* Test error exits of the routines that use factorization
579* of a Hermitian indefinite packed matrix with partial
580* (Bunch-Kaufman) diagonal pivoting method.
581*
582 ELSE IF( lsamen( 2, c2, 'HP' ) ) THEN
583*
584* CHPTRF
585*
586 srnamt = 'CHPTRF'
587 infot = 1
588 CALL chptrf( '/', 0, a, ip, info )
589 CALL chkxer( 'CHPTRF', infot, nout, lerr, ok )
590 infot = 2
591 CALL chptrf( 'U', -1, a, ip, info )
592 CALL chkxer( 'CHPTRF', infot, nout, lerr, ok )
593*
594* CHPTRI
595*
596 srnamt = 'CHPTRI'
597 infot = 1
598 CALL chptri( '/', 0, a, ip, w, info )
599 CALL chkxer( 'CHPTRI', infot, nout, lerr, ok )
600 infot = 2
601 CALL chptri( 'U', -1, a, ip, w, info )
602 CALL chkxer( 'CHPTRI', infot, nout, lerr, ok )
603*
604* CHPTRS
605*
606 srnamt = 'CHPTRS'
607 infot = 1
608 CALL chptrs( '/', 0, 0, a, ip, b, 1, info )
609 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
610 infot = 2
611 CALL chptrs( 'U', -1, 0, a, ip, b, 1, info )
612 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
613 infot = 3
614 CALL chptrs( 'U', 0, -1, a, ip, b, 1, info )
615 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
616 infot = 7
617 CALL chptrs( 'U', 2, 1, a, ip, b, 1, info )
618 CALL chkxer( 'CHPTRS', infot, nout, lerr, ok )
619*
620* CHPRFS
621*
622 srnamt = 'CHPRFS'
623 infot = 1
624 CALL chprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
625 $ info )
626 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
627 infot = 2
628 CALL chprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
629 $ info )
630 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
631 infot = 3
632 CALL chprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
633 $ info )
634 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
635 infot = 8
636 CALL chprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
637 $ info )
638 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
639 infot = 10
640 CALL chprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
641 $ info )
642 CALL chkxer( 'CHPRFS', infot, nout, lerr, ok )
643*
644* CHPCON
645*
646 srnamt = 'CHPCON'
647 infot = 1
648 CALL chpcon( '/', 0, a, ip, anrm, rcond, w, info )
649 CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
650 infot = 2
651 CALL chpcon( 'U', -1, a, ip, anrm, rcond, w, info )
652 CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
653 infot = 5
654 CALL chpcon( 'U', 1, a, ip, -anrm, rcond, w, info )
655 CALL chkxer( 'CHPCON', infot, nout, lerr, ok )
656 END IF
657*
658* Print a summary line.
659*
660 CALL alaesm( path, ok, nout )
661*
662 RETURN
663*
664* End of CERRHE
665*
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine checon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)
CHECON_3
Definition checon_3.f:164
subroutine csycon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)
CSYCON_3
Definition csycon_3.f:164
subroutine checon_rook(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
CHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obt...
subroutine checon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
CHECON
Definition checon.f:123
subroutine cherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CHERFS
Definition cherfs.f:191
subroutine chetf2_rk(uplo, n, a, lda, e, ipiv, info)
CHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition chetf2_rk.f:239
subroutine chetf2_rook(uplo, n, a, lda, ipiv, info)
CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
subroutine chetf2(uplo, n, a, lda, ipiv, info)
CHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition chetf2.f:184
subroutine chetrf_aa_2stage(uplo, n, a, lda, tb, ltb, ipiv, ipiv2, work, lwork, info)
CHETRF_AA_2STAGE
subroutine chetrf_aa(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRF_AA
Definition chetrf_aa.f:133
subroutine chetrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition chetrf_rk.f:257
subroutine chetrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
subroutine chetrf(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRF
Definition chetrf.f:175
subroutine chetri2(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRI2
Definition chetri2.f:125
subroutine chetri2x(uplo, n, a, lda, ipiv, work, nb, info)
CHETRI2X
Definition chetri2x.f:118
subroutine chetri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
CHETRI_3
Definition chetri_3.f:169
subroutine chetri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
CHETRI_3X
Definition chetri_3x.f:158
subroutine chetri_rook(uplo, n, a, lda, ipiv, work, info)
CHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
subroutine chetri(uplo, n, a, lda, ipiv, work, info)
CHETRI
Definition chetri.f:112
subroutine chetrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
CHETRS_3
Definition chetrs_3.f:163
subroutine chetrs_aa_2stage(uplo, n, nrhs, a, lda, tb, ltb, ipiv, ipiv2, b, ldb, info)
CHETRS_AA_2STAGE
subroutine chetrs_aa(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
CHETRS_AA
Definition chetrs_aa.f:135
subroutine chetrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
Definition chetrs.f:118
subroutine chpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)
CHPCON
Definition chpcon.f:117
subroutine chprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CHPRFS
Definition chprfs.f:179
subroutine chptrf(uplo, n, ap, ipiv, info)
CHPTRF
Definition chptrf.f:157
subroutine chptri(uplo, n, ap, ipiv, work, info)
CHPTRI
Definition chptri.f:107
subroutine chptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
CHPTRS
Definition chptrs.f:113
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:72
Here is the call graph for this function:
Here is the caller graph for this function: