LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
chetrf.f
Go to the documentation of this file.
1*> \brief \b CHETRF
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CHETRF + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrf.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrf.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrf.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER UPLO
25* INTEGER INFO, LDA, LWORK, N
26* ..
27* .. Array Arguments ..
28* INTEGER IPIV( * )
29* COMPLEX A( LDA, * ), WORK( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> CHETRF computes the factorization of a complex Hermitian matrix A
39*> using the Bunch-Kaufman diagonal pivoting method. The form of the
40*> factorization is
41*>
42*> A = U*D*U**H or A = L*D*L**H
43*>
44*> where U (or L) is a product of permutation and unit upper (lower)
45*> triangular matrices, and D is Hermitian and block diagonal with
46*> 1-by-1 and 2-by-2 diagonal blocks.
47*>
48*> This is the blocked version of the algorithm, calling Level 3 BLAS.
49*> \endverbatim
50*
51* Arguments:
52* ==========
53*
54*> \param[in] UPLO
55*> \verbatim
56*> UPLO is CHARACTER*1
57*> = 'U': Upper triangle of A is stored;
58*> = 'L': Lower triangle of A is stored.
59*> \endverbatim
60*>
61*> \param[in] N
62*> \verbatim
63*> N is INTEGER
64*> The order of the matrix A. N >= 0.
65*> \endverbatim
66*>
67*> \param[in,out] A
68*> \verbatim
69*> A is COMPLEX array, dimension (LDA,N)
70*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
71*> N-by-N upper triangular part of A contains the upper
72*> triangular part of the matrix A, and the strictly lower
73*> triangular part of A is not referenced. If UPLO = 'L', the
74*> leading N-by-N lower triangular part of A contains the lower
75*> triangular part of the matrix A, and the strictly upper
76*> triangular part of A is not referenced.
77*>
78*> On exit, the block diagonal matrix D and the multipliers used
79*> to obtain the factor U or L (see below for further details).
80*> \endverbatim
81*>
82*> \param[in] LDA
83*> \verbatim
84*> LDA is INTEGER
85*> The leading dimension of the array A. LDA >= max(1,N).
86*> \endverbatim
87*>
88*> \param[out] IPIV
89*> \verbatim
90*> IPIV is INTEGER array, dimension (N)
91*> Details of the interchanges and the block structure of D.
92*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
93*> interchanged and D(k,k) is a 1-by-1 diagonal block.
94*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
95*> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
96*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
97*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
98*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
99*> \endverbatim
100*>
101*> \param[out] WORK
102*> \verbatim
103*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
104*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
105*> \endverbatim
106*>
107*> \param[in] LWORK
108*> \verbatim
109*> LWORK is INTEGER
110*> The length of WORK. LWORK >=1. For best performance
111*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
112*> \endverbatim
113*>
114*> \param[out] INFO
115*> \verbatim
116*> INFO is INTEGER
117*> = 0: successful exit
118*> < 0: if INFO = -i, the i-th argument had an illegal value
119*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
120*> has been completed, but the block diagonal matrix D is
121*> exactly singular, and division by zero will occur if it
122*> is used to solve a system of equations.
123*> \endverbatim
124*
125* Authors:
126* ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \ingroup hetrf
134*
135*> \par Further Details:
136* =====================
137*>
138*> \verbatim
139*>
140*> If UPLO = 'U', then A = U*D*U**H, where
141*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
142*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
143*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
144*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
145*> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
146*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
147*>
148*> ( I v 0 ) k-s
149*> U(k) = ( 0 I 0 ) s
150*> ( 0 0 I ) n-k
151*> k-s s n-k
152*>
153*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
154*> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
155*> and A(k,k), and v overwrites A(1:k-2,k-1:k).
156*>
157*> If UPLO = 'L', then A = L*D*L**H, where
158*> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
159*> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
160*> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
161*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
162*> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
163*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
164*>
165*> ( I 0 0 ) k-1
166*> L(k) = ( 0 I 0 ) s
167*> ( 0 v I ) n-k-s+1
168*> k-1 s n-k-s+1
169*>
170*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
171*> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
172*> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
173*> \endverbatim
174*>
175* =====================================================================
176 SUBROUTINE chetrf( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
177*
178* -- LAPACK computational routine --
179* -- LAPACK is a software package provided by Univ. of Tennessee, --
180* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181*
182* .. Scalar Arguments ..
183 CHARACTER UPLO
184 INTEGER INFO, LDA, LWORK, N
185* ..
186* .. Array Arguments ..
187 INTEGER IPIV( * )
188 COMPLEX A( LDA, * ), WORK( * )
189* ..
190*
191* =====================================================================
192*
193* .. Local Scalars ..
194 LOGICAL LQUERY, UPPER
195 INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
196* ..
197* .. External Functions ..
198 LOGICAL LSAME
199 INTEGER ILAENV
200 REAL SROUNDUP_LWORK
201 EXTERNAL lsame, ilaenv, sroundup_lwork
202* ..
203* .. External Subroutines ..
204 EXTERNAL chetf2, clahef, xerbla
205* ..
206* .. Intrinsic Functions ..
207 INTRINSIC max
208* ..
209* .. Executable Statements ..
210*
211* Test the input parameters.
212*
213 info = 0
214 upper = lsame( uplo, 'U' )
215 lquery = ( lwork.EQ.-1 )
216 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
217 info = -1
218 ELSE IF( n.LT.0 ) THEN
219 info = -2
220 ELSE IF( lda.LT.max( 1, n ) ) THEN
221 info = -4
222 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
223 info = -7
224 END IF
225*
226 IF( info.EQ.0 ) THEN
227*
228* Determine the block size
229*
230 nb = ilaenv( 1, 'CHETRF', uplo, n, -1, -1, -1 )
231 lwkopt = n*nb
232 work( 1 ) = sroundup_lwork(lwkopt)
233 END IF
234*
235 IF( info.NE.0 ) THEN
236 CALL xerbla( 'CHETRF', -info )
237 RETURN
238 ELSE IF( lquery ) THEN
239 RETURN
240 END IF
241*
242 nbmin = 2
243 ldwork = n
244 IF( nb.GT.1 .AND. nb.LT.n ) THEN
245 iws = ldwork*nb
246 IF( lwork.LT.iws ) THEN
247 nb = max( lwork / ldwork, 1 )
248 nbmin = max( 2, ilaenv( 2, 'CHETRF', uplo, n, -1, -1, -1 ) )
249 END IF
250 ELSE
251 iws = 1
252 END IF
253 IF( nb.LT.nbmin )
254 $ nb = n
255*
256 IF( upper ) THEN
257*
258* Factorize A as U*D*U**H using the upper triangle of A
259*
260* K is the main loop index, decreasing from N to 1 in steps of
261* KB, where KB is the number of columns factorized by CLAHEF;
262* KB is either NB or NB-1, or K for the last block
263*
264 k = n
265 10 CONTINUE
266*
267* If K < 1, exit from loop
268*
269 IF( k.LT.1 )
270 $ GO TO 40
271*
272 IF( k.GT.nb ) THEN
273*
274* Factorize columns k-kb+1:k of A and use blocked code to
275* update columns 1:k-kb
276*
277 CALL clahef( uplo, k, nb, kb, a, lda, ipiv, work, n, iinfo )
278 ELSE
279*
280* Use unblocked code to factorize columns 1:k of A
281*
282 CALL chetf2( uplo, k, a, lda, ipiv, iinfo )
283 kb = k
284 END IF
285*
286* Set INFO on the first occurrence of a zero pivot
287*
288 IF( info.EQ.0 .AND. iinfo.GT.0 )
289 $ info = iinfo
290*
291* Decrease K and return to the start of the main loop
292*
293 k = k - kb
294 GO TO 10
295*
296 ELSE
297*
298* Factorize A as L*D*L**H using the lower triangle of A
299*
300* K is the main loop index, increasing from 1 to N in steps of
301* KB, where KB is the number of columns factorized by CLAHEF;
302* KB is either NB or NB-1, or N-K+1 for the last block
303*
304 k = 1
305 20 CONTINUE
306*
307* If K > N, exit from loop
308*
309 IF( k.GT.n )
310 $ GO TO 40
311*
312 IF( k.LE.n-nb ) THEN
313*
314* Factorize columns k:k+kb-1 of A and use blocked code to
315* update columns k+kb:n
316*
317 CALL clahef( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),
318 $ work, n, iinfo )
319 ELSE
320*
321* Use unblocked code to factorize columns k:n of A
322*
323 CALL chetf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo )
324 kb = n - k + 1
325 END IF
326*
327* Set INFO on the first occurrence of a zero pivot
328*
329 IF( info.EQ.0 .AND. iinfo.GT.0 )
330 $ info = iinfo + k - 1
331*
332* Adjust IPIV
333*
334 DO 30 j = k, k + kb - 1
335 IF( ipiv( j ).GT.0 ) THEN
336 ipiv( j ) = ipiv( j ) + k - 1
337 ELSE
338 ipiv( j ) = ipiv( j ) - k + 1
339 END IF
340 30 CONTINUE
341*
342* Increase K and return to the start of the main loop
343*
344 k = k + kb
345 GO TO 20
346*
347 END IF
348*
349 40 CONTINUE
350 work( 1 ) = sroundup_lwork(lwkopt)
351 RETURN
352*
353* End of CHETRF
354*
355 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chetf2(uplo, n, a, lda, ipiv, info)
CHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition chetf2.f:186
subroutine chetrf(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRF
Definition chetrf.f:177
subroutine clahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
CLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kauf...
Definition clahef.f:177