LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ chetrf()

subroutine chetrf ( character  uplo,
integer  n,
complex, dimension( lda, * )  a,
integer  lda,
integer, dimension( * )  ipiv,
complex, dimension( * )  work,
integer  lwork,
integer  info 
)

CHETRF

Download CHETRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CHETRF computes the factorization of a complex Hermitian matrix A
 using the Bunch-Kaufman diagonal pivoting method.  The form of the
 factorization is

    A = U*D*U**H  or  A = L*D*L**H

 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, and D is Hermitian and block diagonal with
 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level 3 BLAS.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L (see below for further details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK >=1.  For best performance
          LWORK >= N*NB, where NB is the block size returned by ILAENV.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                has been completed, but the block diagonal matrix D is
                exactly singular, and division by zero will occur if it
                is used to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  If UPLO = 'U', then A = U*D*U**H, where
     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    v    0   )   k-s
     U(k) =  (   0    I    0   )   s
             (   0    0    I   )   n-k
                k-s   s   n-k

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  and A(k,k), and v overwrites A(1:k-2,k-1:k).

  If UPLO = 'L', then A = L*D*L**H, where
     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    0     0   )  k-1
     L(k) =  (   0    I     0   )  s
             (   0    v     I   )  n-k-s+1
                k-1   s  n-k-s+1

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

Definition at line 176 of file chetrf.f.

177*
178* -- LAPACK computational routine --
179* -- LAPACK is a software package provided by Univ. of Tennessee, --
180* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181*
182* .. Scalar Arguments ..
183 CHARACTER UPLO
184 INTEGER INFO, LDA, LWORK, N
185* ..
186* .. Array Arguments ..
187 INTEGER IPIV( * )
188 COMPLEX A( LDA, * ), WORK( * )
189* ..
190*
191* =====================================================================
192*
193* .. Local Scalars ..
194 LOGICAL LQUERY, UPPER
195 INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
196* ..
197* .. External Functions ..
198 LOGICAL LSAME
199 INTEGER ILAENV
200 REAL SROUNDUP_LWORK
201 EXTERNAL lsame, ilaenv, sroundup_lwork
202* ..
203* .. External Subroutines ..
204 EXTERNAL chetf2, clahef, xerbla
205* ..
206* .. Intrinsic Functions ..
207 INTRINSIC max
208* ..
209* .. Executable Statements ..
210*
211* Test the input parameters.
212*
213 info = 0
214 upper = lsame( uplo, 'U' )
215 lquery = ( lwork.EQ.-1 )
216 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
217 info = -1
218 ELSE IF( n.LT.0 ) THEN
219 info = -2
220 ELSE IF( lda.LT.max( 1, n ) ) THEN
221 info = -4
222 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
223 info = -7
224 END IF
225*
226 IF( info.EQ.0 ) THEN
227*
228* Determine the block size
229*
230 nb = ilaenv( 1, 'CHETRF', uplo, n, -1, -1, -1 )
231 lwkopt = n*nb
232 work( 1 ) = sroundup_lwork(lwkopt)
233 END IF
234*
235 IF( info.NE.0 ) THEN
236 CALL xerbla( 'CHETRF', -info )
237 RETURN
238 ELSE IF( lquery ) THEN
239 RETURN
240 END IF
241*
242 nbmin = 2
243 ldwork = n
244 IF( nb.GT.1 .AND. nb.LT.n ) THEN
245 iws = ldwork*nb
246 IF( lwork.LT.iws ) THEN
247 nb = max( lwork / ldwork, 1 )
248 nbmin = max( 2, ilaenv( 2, 'CHETRF', uplo, n, -1, -1, -1 ) )
249 END IF
250 ELSE
251 iws = 1
252 END IF
253 IF( nb.LT.nbmin )
254 $ nb = n
255*
256 IF( upper ) THEN
257*
258* Factorize A as U*D*U**H using the upper triangle of A
259*
260* K is the main loop index, decreasing from N to 1 in steps of
261* KB, where KB is the number of columns factorized by CLAHEF;
262* KB is either NB or NB-1, or K for the last block
263*
264 k = n
265 10 CONTINUE
266*
267* If K < 1, exit from loop
268*
269 IF( k.LT.1 )
270 $ GO TO 40
271*
272 IF( k.GT.nb ) THEN
273*
274* Factorize columns k-kb+1:k of A and use blocked code to
275* update columns 1:k-kb
276*
277 CALL clahef( uplo, k, nb, kb, a, lda, ipiv, work, n, iinfo )
278 ELSE
279*
280* Use unblocked code to factorize columns 1:k of A
281*
282 CALL chetf2( uplo, k, a, lda, ipiv, iinfo )
283 kb = k
284 END IF
285*
286* Set INFO on the first occurrence of a zero pivot
287*
288 IF( info.EQ.0 .AND. iinfo.GT.0 )
289 $ info = iinfo
290*
291* Decrease K and return to the start of the main loop
292*
293 k = k - kb
294 GO TO 10
295*
296 ELSE
297*
298* Factorize A as L*D*L**H using the lower triangle of A
299*
300* K is the main loop index, increasing from 1 to N in steps of
301* KB, where KB is the number of columns factorized by CLAHEF;
302* KB is either NB or NB-1, or N-K+1 for the last block
303*
304 k = 1
305 20 CONTINUE
306*
307* If K > N, exit from loop
308*
309 IF( k.GT.n )
310 $ GO TO 40
311*
312 IF( k.LE.n-nb ) THEN
313*
314* Factorize columns k:k+kb-1 of A and use blocked code to
315* update columns k+kb:n
316*
317 CALL clahef( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),
318 $ work, n, iinfo )
319 ELSE
320*
321* Use unblocked code to factorize columns k:n of A
322*
323 CALL chetf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo )
324 kb = n - k + 1
325 END IF
326*
327* Set INFO on the first occurrence of a zero pivot
328*
329 IF( info.EQ.0 .AND. iinfo.GT.0 )
330 $ info = iinfo + k - 1
331*
332* Adjust IPIV
333*
334 DO 30 j = k, k + kb - 1
335 IF( ipiv( j ).GT.0 ) THEN
336 ipiv( j ) = ipiv( j ) + k - 1
337 ELSE
338 ipiv( j ) = ipiv( j ) - k + 1
339 END IF
340 30 CONTINUE
341*
342* Increase K and return to the start of the main loop
343*
344 k = k + kb
345 GO TO 20
346*
347 END IF
348*
349 40 CONTINUE
350 work( 1 ) = sroundup_lwork(lwkopt)
351 RETURN
352*
353* End of CHETRF
354*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chetf2(uplo, n, a, lda, ipiv, info)
CHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition chetf2.f:186
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine clahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
CLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kauf...
Definition clahef.f:177
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: