LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cherfs()

subroutine cherfs ( character uplo,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
real, dimension( * ) ferr,
real, dimension( * ) berr,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CHERFS

Download CHERFS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CHERFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is Hermitian indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]AF
!>          AF is COMPLEX array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**H or
!>          A = L*D*L**H as computed by CHETRF.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by CHETRF.
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in,out]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by CHETRS.
!>          On exit, the improved solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Internal Parameters:
!>  ITMAX is the maximum number of steps of iterative refinement.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 188 of file cherfs.f.

191*
192* -- LAPACK computational routine --
193* -- LAPACK is a software package provided by Univ. of Tennessee, --
194* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
195*
196* .. Scalar Arguments ..
197 CHARACTER UPLO
198 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
199* ..
200* .. Array Arguments ..
201 INTEGER IPIV( * )
202 REAL BERR( * ), FERR( * ), RWORK( * )
203 COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
204 $ WORK( * ), X( LDX, * )
205* ..
206*
207* =====================================================================
208*
209* .. Parameters ..
210 INTEGER ITMAX
211 parameter( itmax = 5 )
212 REAL ZERO
213 parameter( zero = 0.0e+0 )
214 COMPLEX ONE
215 parameter( one = ( 1.0e+0, 0.0e+0 ) )
216 REAL TWO
217 parameter( two = 2.0e+0 )
218 REAL THREE
219 parameter( three = 3.0e+0 )
220* ..
221* .. Local Scalars ..
222 LOGICAL UPPER
223 INTEGER COUNT, I, J, K, KASE, NZ
224 REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
225 COMPLEX ZDUM
226* ..
227* .. Local Arrays ..
228 INTEGER ISAVE( 3 )
229* ..
230* .. External Subroutines ..
231 EXTERNAL caxpy, ccopy, chemv, chetrs, clacn2,
232 $ xerbla
233* ..
234* .. Intrinsic Functions ..
235 INTRINSIC abs, aimag, max, real
236* ..
237* .. External Functions ..
238 LOGICAL LSAME
239 REAL SLAMCH
240 EXTERNAL lsame, slamch
241* ..
242* .. Statement Functions ..
243 REAL CABS1
244* ..
245* .. Statement Function definitions ..
246 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
247* ..
248* .. Executable Statements ..
249*
250* Test the input parameters.
251*
252 info = 0
253 upper = lsame( uplo, 'U' )
254 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
255 info = -1
256 ELSE IF( n.LT.0 ) THEN
257 info = -2
258 ELSE IF( nrhs.LT.0 ) THEN
259 info = -3
260 ELSE IF( lda.LT.max( 1, n ) ) THEN
261 info = -5
262 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
263 info = -7
264 ELSE IF( ldb.LT.max( 1, n ) ) THEN
265 info = -10
266 ELSE IF( ldx.LT.max( 1, n ) ) THEN
267 info = -12
268 END IF
269 IF( info.NE.0 ) THEN
270 CALL xerbla( 'CHERFS', -info )
271 RETURN
272 END IF
273*
274* Quick return if possible
275*
276 IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
277 DO 10 j = 1, nrhs
278 ferr( j ) = zero
279 berr( j ) = zero
280 10 CONTINUE
281 RETURN
282 END IF
283*
284* NZ = maximum number of nonzero elements in each row of A, plus 1
285*
286 nz = n + 1
287 eps = slamch( 'Epsilon' )
288 safmin = slamch( 'Safe minimum' )
289 safe1 = real( nz )*safmin
290 safe2 = safe1 / eps
291*
292* Do for each right hand side
293*
294 DO 140 j = 1, nrhs
295*
296 count = 1
297 lstres = three
298 20 CONTINUE
299*
300* Loop until stopping criterion is satisfied.
301*
302* Compute residual R = B - A * X
303*
304 CALL ccopy( n, b( 1, j ), 1, work, 1 )
305 CALL chemv( uplo, n, -one, a, lda, x( 1, j ), 1, one, work,
306 $ 1 )
307*
308* Compute componentwise relative backward error from formula
309*
310* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
311*
312* where abs(Z) is the componentwise absolute value of the matrix
313* or vector Z. If the i-th component of the denominator is less
314* than SAFE2, then SAFE1 is added to the i-th components of the
315* numerator and denominator before dividing.
316*
317 DO 30 i = 1, n
318 rwork( i ) = cabs1( b( i, j ) )
319 30 CONTINUE
320*
321* Compute abs(A)*abs(X) + abs(B).
322*
323 IF( upper ) THEN
324 DO 50 k = 1, n
325 s = zero
326 xk = cabs1( x( k, j ) )
327 DO 40 i = 1, k - 1
328 rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk
329 s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) )
330 40 CONTINUE
331 rwork( k ) = rwork( k ) + abs( real( a( k, k ) ) )*xk + s
332 50 CONTINUE
333 ELSE
334 DO 70 k = 1, n
335 s = zero
336 xk = cabs1( x( k, j ) )
337 rwork( k ) = rwork( k ) + abs( real( a( k, k ) ) )*xk
338 DO 60 i = k + 1, n
339 rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk
340 s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) )
341 60 CONTINUE
342 rwork( k ) = rwork( k ) + s
343 70 CONTINUE
344 END IF
345 s = zero
346 DO 80 i = 1, n
347 IF( rwork( i ).GT.safe2 ) THEN
348 s = max( s, cabs1( work( i ) ) / rwork( i ) )
349 ELSE
350 s = max( s, ( cabs1( work( i ) )+safe1 ) /
351 $ ( rwork( i )+safe1 ) )
352 END IF
353 80 CONTINUE
354 berr( j ) = s
355*
356* Test stopping criterion. Continue iterating if
357* 1) The residual BERR(J) is larger than machine epsilon, and
358* 2) BERR(J) decreased by at least a factor of 2 during the
359* last iteration, and
360* 3) At most ITMAX iterations tried.
361*
362 IF( berr( j ).GT.eps .AND. two*berr( j ).LE.lstres .AND.
363 $ count.LE.itmax ) THEN
364*
365* Update solution and try again.
366*
367 CALL chetrs( uplo, n, 1, af, ldaf, ipiv, work, n, info )
368 CALL caxpy( n, one, work, 1, x( 1, j ), 1 )
369 lstres = berr( j )
370 count = count + 1
371 GO TO 20
372 END IF
373*
374* Bound error from formula
375*
376* norm(X - XTRUE) / norm(X) .le. FERR =
377* norm( abs(inv(A))*
378* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
379*
380* where
381* norm(Z) is the magnitude of the largest component of Z
382* inv(A) is the inverse of A
383* abs(Z) is the componentwise absolute value of the matrix or
384* vector Z
385* NZ is the maximum number of nonzeros in any row of A, plus 1
386* EPS is machine epsilon
387*
388* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
389* is incremented by SAFE1 if the i-th component of
390* abs(A)*abs(X) + abs(B) is less than SAFE2.
391*
392* Use CLACN2 to estimate the infinity-norm of the matrix
393* inv(A) * diag(W),
394* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
395*
396 DO 90 i = 1, n
397 IF( rwork( i ).GT.safe2 ) THEN
398 rwork( i ) = cabs1( work( i ) ) + real( nz )*
399 $ eps*rwork( i )
400 ELSE
401 rwork( i ) = cabs1( work( i ) ) + real( nz )*
402 $ eps*rwork( i ) + safe1
403 END IF
404 90 CONTINUE
405*
406 kase = 0
407 100 CONTINUE
408 CALL clacn2( n, work( n+1 ), work, ferr( j ), kase, isave )
409 IF( kase.NE.0 ) THEN
410 IF( kase.EQ.1 ) THEN
411*
412* Multiply by diag(W)*inv(A**H).
413*
414 CALL chetrs( uplo, n, 1, af, ldaf, ipiv, work, n,
415 $ info )
416 DO 110 i = 1, n
417 work( i ) = rwork( i )*work( i )
418 110 CONTINUE
419 ELSE IF( kase.EQ.2 ) THEN
420*
421* Multiply by inv(A)*diag(W).
422*
423 DO 120 i = 1, n
424 work( i ) = rwork( i )*work( i )
425 120 CONTINUE
426 CALL chetrs( uplo, n, 1, af, ldaf, ipiv, work, n,
427 $ info )
428 END IF
429 GO TO 100
430 END IF
431*
432* Normalize error.
433*
434 lstres = zero
435 DO 130 i = 1, n
436 lstres = max( lstres, cabs1( x( i, j ) ) )
437 130 CONTINUE
438 IF( lstres.NE.zero )
439 $ ferr( j ) = ferr( j ) / lstres
440*
441 140 CONTINUE
442*
443 RETURN
444*
445* End of CHERFS
446*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine chemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
CHEMV
Definition chemv.f:154
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
Definition chetrs.f:118
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: