LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
chptrf.f
Go to the documentation of this file.
1*> \brief \b CHPTRF
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CHPTRF + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chptrf.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chptrf.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chptrf.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CHPTRF( UPLO, N, AP, IPIV, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER INFO, N
24* ..
25* .. Array Arguments ..
26* INTEGER IPIV( * )
27* COMPLEX AP( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CHPTRF computes the factorization of a complex Hermitian packed
37*> matrix A using the Bunch-Kaufman diagonal pivoting method:
38*>
39*> A = U*D*U**H or A = L*D*L**H
40*>
41*> where U (or L) is a product of permutation and unit upper (lower)
42*> triangular matrices, and D is Hermitian and block diagonal with
43*> 1-by-1 and 2-by-2 diagonal blocks.
44*> \endverbatim
45*
46* Arguments:
47* ==========
48*
49*> \param[in] UPLO
50*> \verbatim
51*> UPLO is CHARACTER*1
52*> = 'U': Upper triangle of A is stored;
53*> = 'L': Lower triangle of A is stored.
54*> \endverbatim
55*>
56*> \param[in] N
57*> \verbatim
58*> N is INTEGER
59*> The order of the matrix A. N >= 0.
60*> \endverbatim
61*>
62*> \param[in,out] AP
63*> \verbatim
64*> AP is COMPLEX array, dimension (N*(N+1)/2)
65*> On entry, the upper or lower triangle of the Hermitian matrix
66*> A, packed columnwise in a linear array. The j-th column of A
67*> is stored in the array AP as follows:
68*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
69*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
70*>
71*> On exit, the block diagonal matrix D and the multipliers used
72*> to obtain the factor U or L, stored as a packed triangular
73*> matrix overwriting A (see below for further details).
74*> \endverbatim
75*>
76*> \param[out] IPIV
77*> \verbatim
78*> IPIV is INTEGER array, dimension (N)
79*> Details of the interchanges and the block structure of D.
80*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
81*> interchanged and D(k,k) is a 1-by-1 diagonal block.
82*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
83*> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
84*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
85*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
86*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
87*> \endverbatim
88*>
89*> \param[out] INFO
90*> \verbatim
91*> INFO is INTEGER
92*> = 0: successful exit
93*> < 0: if INFO = -i, the i-th argument had an illegal value
94*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
95*> has been completed, but the block diagonal matrix D is
96*> exactly singular, and division by zero will occur if it
97*> is used to solve a system of equations.
98*> \endverbatim
99*
100* Authors:
101* ========
102*
103*> \author Univ. of Tennessee
104*> \author Univ. of California Berkeley
105*> \author Univ. of Colorado Denver
106*> \author NAG Ltd.
107*
108*> \ingroup hptrf
109*
110*> \par Further Details:
111* =====================
112*>
113*> \verbatim
114*>
115*> If UPLO = 'U', then A = U*D*U**H, where
116*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
117*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
118*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
119*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
120*> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
121*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
122*>
123*> ( I v 0 ) k-s
124*> U(k) = ( 0 I 0 ) s
125*> ( 0 0 I ) n-k
126*> k-s s n-k
127*>
128*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
129*> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
130*> and A(k,k), and v overwrites A(1:k-2,k-1:k).
131*>
132*> If UPLO = 'L', then A = L*D*L**H, where
133*> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
134*> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
135*> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
136*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
137*> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
138*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
139*>
140*> ( I 0 0 ) k-1
141*> L(k) = ( 0 I 0 ) s
142*> ( 0 v I ) n-k-s+1
143*> k-1 s n-k-s+1
144*>
145*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
146*> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
147*> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
148*> \endverbatim
149*
150*> \par Contributors:
151* ==================
152*>
153*> J. Lewis, Boeing Computer Services Company
154*>
155* =====================================================================
156 SUBROUTINE chptrf( UPLO, N, AP, IPIV, INFO )
157*
158* -- LAPACK computational routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 CHARACTER UPLO
164 INTEGER INFO, N
165* ..
166* .. Array Arguments ..
167 INTEGER IPIV( * )
168 COMPLEX AP( * )
169* ..
170*
171* =====================================================================
172*
173* .. Parameters ..
174 REAL ZERO, ONE
175 parameter( zero = 0.0e+0, one = 1.0e+0 )
176 REAL EIGHT, SEVTEN
177 parameter( eight = 8.0e+0, sevten = 17.0e+0 )
178* ..
179* .. Local Scalars ..
180 LOGICAL UPPER
181 INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
182 $ KSTEP, KX, NPP
183 REAL ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
184 $ TT
185 COMPLEX D12, D21, T, WK, WKM1, WKP1, ZDUM
186* ..
187* .. External Functions ..
188 LOGICAL LSAME
189 INTEGER ICAMAX
190 REAL SLAPY2
191 EXTERNAL lsame, icamax, slapy2
192* ..
193* .. External Subroutines ..
194 EXTERNAL chpr, csscal, cswap, xerbla
195* ..
196* .. Intrinsic Functions ..
197 INTRINSIC abs, aimag, cmplx, conjg, max, real, sqrt
198* ..
199* .. Statement Functions ..
200 REAL CABS1
201* ..
202* .. Statement Function definitions ..
203 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
204* ..
205* .. Executable Statements ..
206*
207* Test the input parameters.
208*
209 info = 0
210 upper = lsame( uplo, 'U' )
211 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
212 info = -1
213 ELSE IF( n.LT.0 ) THEN
214 info = -2
215 END IF
216 IF( info.NE.0 ) THEN
217 CALL xerbla( 'CHPTRF', -info )
218 RETURN
219 END IF
220*
221* Initialize ALPHA for use in choosing pivot block size.
222*
223 alpha = ( one+sqrt( sevten ) ) / eight
224*
225 IF( upper ) THEN
226*
227* Factorize A as U*D*U**H using the upper triangle of A
228*
229* K is the main loop index, decreasing from N to 1 in steps of
230* 1 or 2
231*
232 k = n
233 kc = ( n-1 )*n / 2 + 1
234 10 CONTINUE
235 knc = kc
236*
237* If K < 1, exit from loop
238*
239 IF( k.LT.1 )
240 $ GO TO 110
241 kstep = 1
242*
243* Determine rows and columns to be interchanged and whether
244* a 1-by-1 or 2-by-2 pivot block will be used
245*
246 absakk = abs( real( ap( kc+k-1 ) ) )
247*
248* IMAX is the row-index of the largest off-diagonal element in
249* column K, and COLMAX is its absolute value
250*
251 IF( k.GT.1 ) THEN
252 imax = icamax( k-1, ap( kc ), 1 )
253 colmax = cabs1( ap( kc+imax-1 ) )
254 ELSE
255 colmax = zero
256 END IF
257*
258 IF( max( absakk, colmax ).EQ.zero ) THEN
259*
260* Column K is zero: set INFO and continue
261*
262 IF( info.EQ.0 )
263 $ info = k
264 kp = k
265 ap( kc+k-1 ) = real( ap( kc+k-1 ) )
266 ELSE
267 IF( absakk.GE.alpha*colmax ) THEN
268*
269* no interchange, use 1-by-1 pivot block
270*
271 kp = k
272 ELSE
273*
274* JMAX is the column-index of the largest off-diagonal
275* element in row IMAX, and ROWMAX is its absolute value
276*
277 rowmax = zero
278 jmax = imax
279 kx = imax*( imax+1 ) / 2 + imax
280 DO 20 j = imax + 1, k
281 IF( cabs1( ap( kx ) ).GT.rowmax ) THEN
282 rowmax = cabs1( ap( kx ) )
283 jmax = j
284 END IF
285 kx = kx + j
286 20 CONTINUE
287 kpc = ( imax-1 )*imax / 2 + 1
288 IF( imax.GT.1 ) THEN
289 jmax = icamax( imax-1, ap( kpc ), 1 )
290 rowmax = max( rowmax, cabs1( ap( kpc+jmax-1 ) ) )
291 END IF
292*
293 IF( absakk.GE.alpha*colmax*( colmax / rowmax ) ) THEN
294*
295* no interchange, use 1-by-1 pivot block
296*
297 kp = k
298 ELSE IF( abs( real( ap( kpc+imax-1 ) ) ).GE.alpha*
299 $ rowmax ) THEN
300*
301* interchange rows and columns K and IMAX, use 1-by-1
302* pivot block
303*
304 kp = imax
305 ELSE
306*
307* interchange rows and columns K-1 and IMAX, use 2-by-2
308* pivot block
309*
310 kp = imax
311 kstep = 2
312 END IF
313 END IF
314*
315 kk = k - kstep + 1
316 IF( kstep.EQ.2 )
317 $ knc = knc - k + 1
318 IF( kp.NE.kk ) THEN
319*
320* Interchange rows and columns KK and KP in the leading
321* submatrix A(1:k,1:k)
322*
323 CALL cswap( kp-1, ap( knc ), 1, ap( kpc ), 1 )
324 kx = kpc + kp - 1
325 DO 30 j = kp + 1, kk - 1
326 kx = kx + j - 1
327 t = conjg( ap( knc+j-1 ) )
328 ap( knc+j-1 ) = conjg( ap( kx ) )
329 ap( kx ) = t
330 30 CONTINUE
331 ap( kx+kk-1 ) = conjg( ap( kx+kk-1 ) )
332 r1 = real( ap( knc+kk-1 ) )
333 ap( knc+kk-1 ) = real( ap( kpc+kp-1 ) )
334 ap( kpc+kp-1 ) = r1
335 IF( kstep.EQ.2 ) THEN
336 ap( kc+k-1 ) = real( ap( kc+k-1 ) )
337 t = ap( kc+k-2 )
338 ap( kc+k-2 ) = ap( kc+kp-1 )
339 ap( kc+kp-1 ) = t
340 END IF
341 ELSE
342 ap( kc+k-1 ) = real( ap( kc+k-1 ) )
343 IF( kstep.EQ.2 )
344 $ ap( kc-1 ) = real( ap( kc-1 ) )
345 END IF
346*
347* Update the leading submatrix
348*
349 IF( kstep.EQ.1 ) THEN
350*
351* 1-by-1 pivot block D(k): column k now holds
352*
353* W(k) = U(k)*D(k)
354*
355* where U(k) is the k-th column of U
356*
357* Perform a rank-1 update of A(1:k-1,1:k-1) as
358*
359* A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
360*
361 r1 = one / real( ap( kc+k-1 ) )
362 CALL chpr( uplo, k-1, -r1, ap( kc ), 1, ap )
363*
364* Store U(k) in column k
365*
366 CALL csscal( k-1, r1, ap( kc ), 1 )
367 ELSE
368*
369* 2-by-2 pivot block D(k): columns k and k-1 now hold
370*
371* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
372*
373* where U(k) and U(k-1) are the k-th and (k-1)-th columns
374* of U
375*
376* Perform a rank-2 update of A(1:k-2,1:k-2) as
377*
378* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
379* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
380*
381 IF( k.GT.2 ) THEN
382*
383 d = slapy2( real( ap( k-1+( k-1 )*k / 2 ) ),
384 $ aimag( ap( k-1+( k-1 )*k / 2 ) ) )
385 d22 = real( ap( k-1+( k-2 )*( k-1 ) / 2 ) ) / d
386 d11 = real( ap( k+( k-1 )*k / 2 ) ) / d
387 tt = one / ( d11*d22-one )
388 d12 = ap( k-1+( k-1 )*k / 2 ) / d
389 d = tt / d
390*
391 DO 50 j = k - 2, 1, -1
392 wkm1 = d*( d11*ap( j+( k-2 )*( k-1 ) / 2 )-
393 $ conjg( d12 )*ap( j+( k-1 )*k / 2 ) )
394 wk = d*( d22*ap( j+( k-1 )*k / 2 )-d12*
395 $ ap( j+( k-2 )*( k-1 ) / 2 ) )
396 DO 40 i = j, 1, -1
397 ap( i+( j-1 )*j / 2 ) = ap( i+( j-1 )*j / 2 ) -
398 $ ap( i+( k-1 )*k / 2 )*conjg( wk ) -
399 $ ap( i+( k-2 )*( k-1 ) / 2 )*conjg( wkm1 )
400 40 CONTINUE
401 ap( j+( k-1 )*k / 2 ) = wk
402 ap( j+( k-2 )*( k-1 ) / 2 ) = wkm1
403 ap( j+( j-1 )*j / 2 ) = cmplx( real( ap( j+( j-1 )*
404 $ j / 2 ) ), 0.0e+0 )
405 50 CONTINUE
406*
407 END IF
408*
409 END IF
410 END IF
411*
412* Store details of the interchanges in IPIV
413*
414 IF( kstep.EQ.1 ) THEN
415 ipiv( k ) = kp
416 ELSE
417 ipiv( k ) = -kp
418 ipiv( k-1 ) = -kp
419 END IF
420*
421* Decrease K and return to the start of the main loop
422*
423 k = k - kstep
424 kc = knc - k
425 GO TO 10
426*
427 ELSE
428*
429* Factorize A as L*D*L**H using the lower triangle of A
430*
431* K is the main loop index, increasing from 1 to N in steps of
432* 1 or 2
433*
434 k = 1
435 kc = 1
436 npp = n*( n+1 ) / 2
437 60 CONTINUE
438 knc = kc
439*
440* If K > N, exit from loop
441*
442 IF( k.GT.n )
443 $ GO TO 110
444 kstep = 1
445*
446* Determine rows and columns to be interchanged and whether
447* a 1-by-1 or 2-by-2 pivot block will be used
448*
449 absakk = abs( real( ap( kc ) ) )
450*
451* IMAX is the row-index of the largest off-diagonal element in
452* column K, and COLMAX is its absolute value
453*
454 IF( k.LT.n ) THEN
455 imax = k + icamax( n-k, ap( kc+1 ), 1 )
456 colmax = cabs1( ap( kc+imax-k ) )
457 ELSE
458 colmax = zero
459 END IF
460*
461 IF( max( absakk, colmax ).EQ.zero ) THEN
462*
463* Column K is zero: set INFO and continue
464*
465 IF( info.EQ.0 )
466 $ info = k
467 kp = k
468 ap( kc ) = real( ap( kc ) )
469 ELSE
470 IF( absakk.GE.alpha*colmax ) THEN
471*
472* no interchange, use 1-by-1 pivot block
473*
474 kp = k
475 ELSE
476*
477* JMAX is the column-index of the largest off-diagonal
478* element in row IMAX, and ROWMAX is its absolute value
479*
480 rowmax = zero
481 kx = kc + imax - k
482 DO 70 j = k, imax - 1
483 IF( cabs1( ap( kx ) ).GT.rowmax ) THEN
484 rowmax = cabs1( ap( kx ) )
485 jmax = j
486 END IF
487 kx = kx + n - j
488 70 CONTINUE
489 kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2 + 1
490 IF( imax.LT.n ) THEN
491 jmax = imax + icamax( n-imax, ap( kpc+1 ), 1 )
492 rowmax = max( rowmax, cabs1( ap( kpc+jmax-imax ) ) )
493 END IF
494*
495 IF( absakk.GE.alpha*colmax*( colmax / rowmax ) ) THEN
496*
497* no interchange, use 1-by-1 pivot block
498*
499 kp = k
500 ELSE IF( abs( real( ap( kpc ) ) ).GE.alpha*rowmax ) THEN
501*
502* interchange rows and columns K and IMAX, use 1-by-1
503* pivot block
504*
505 kp = imax
506 ELSE
507*
508* interchange rows and columns K+1 and IMAX, use 2-by-2
509* pivot block
510*
511 kp = imax
512 kstep = 2
513 END IF
514 END IF
515*
516 kk = k + kstep - 1
517 IF( kstep.EQ.2 )
518 $ knc = knc + n - k + 1
519 IF( kp.NE.kk ) THEN
520*
521* Interchange rows and columns KK and KP in the trailing
522* submatrix A(k:n,k:n)
523*
524 IF( kp.LT.n )
525 $ CALL cswap( n-kp, ap( knc+kp-kk+1 ), 1,
526 $ ap( kpc+1 ),
527 $ 1 )
528 kx = knc + kp - kk
529 DO 80 j = kk + 1, kp - 1
530 kx = kx + n - j + 1
531 t = conjg( ap( knc+j-kk ) )
532 ap( knc+j-kk ) = conjg( ap( kx ) )
533 ap( kx ) = t
534 80 CONTINUE
535 ap( knc+kp-kk ) = conjg( ap( knc+kp-kk ) )
536 r1 = real( ap( knc ) )
537 ap( knc ) = real( ap( kpc ) )
538 ap( kpc ) = r1
539 IF( kstep.EQ.2 ) THEN
540 ap( kc ) = real( ap( kc ) )
541 t = ap( kc+1 )
542 ap( kc+1 ) = ap( kc+kp-k )
543 ap( kc+kp-k ) = t
544 END IF
545 ELSE
546 ap( kc ) = real( ap( kc ) )
547 IF( kstep.EQ.2 )
548 $ ap( knc ) = real( ap( knc ) )
549 END IF
550*
551* Update the trailing submatrix
552*
553 IF( kstep.EQ.1 ) THEN
554*
555* 1-by-1 pivot block D(k): column k now holds
556*
557* W(k) = L(k)*D(k)
558*
559* where L(k) is the k-th column of L
560*
561 IF( k.LT.n ) THEN
562*
563* Perform a rank-1 update of A(k+1:n,k+1:n) as
564*
565* A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
566*
567 r1 = one / real( ap( kc ) )
568 CALL chpr( uplo, n-k, -r1, ap( kc+1 ), 1,
569 $ ap( kc+n-k+1 ) )
570*
571* Store L(k) in column K
572*
573 CALL csscal( n-k, r1, ap( kc+1 ), 1 )
574 END IF
575 ELSE
576*
577* 2-by-2 pivot block D(k): columns K and K+1 now hold
578*
579* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
580*
581* where L(k) and L(k+1) are the k-th and (k+1)-th columns
582* of L
583*
584 IF( k.LT.n-1 ) THEN
585*
586* Perform a rank-2 update of A(k+2:n,k+2:n) as
587*
588* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
589* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
590*
591* where L(k) and L(k+1) are the k-th and (k+1)-th
592* columns of L
593*
594 d = slapy2(
595 $ real( ap( k+1+( k-1 )*( 2*n-k ) / 2 ) ),
596 $ aimag( ap( k+1+( k-1 )*( 2*n-k ) / 2 ) ) )
597 d11 = real( ap( k+1+k*( 2*n-k-1 ) / 2 ) ) / d
598 d22 = real( ap( k+( k-1 )*( 2*n-k ) / 2 ) ) / d
599 tt = one / ( d11*d22-one )
600 d21 = ap( k+1+( k-1 )*( 2*n-k ) / 2 ) / d
601 d = tt / d
602*
603 DO 100 j = k + 2, n
604 wk = d*( d11*ap( j+( k-1 )*( 2*n-k ) / 2 )-d21*
605 $ ap( j+k*( 2*n-k-1 ) / 2 ) )
606 wkp1 = d*( d22*ap( j+k*( 2*n-k-1 ) / 2 )-
607 $ conjg( d21 )*ap( j+( k-1 )*( 2*n-k ) / 2 ) )
608 DO 90 i = j, n
609 ap( i+( j-1 )*( 2*n-j ) / 2 ) = ap( i+( j-1 )*
610 $ ( 2*n-j ) / 2 ) - ap( i+( k-1 )*( 2*n-k ) /
611 $ 2 )*conjg( wk ) - ap( i+k*( 2*n-k-1 ) / 2 )*
612 $ conjg( wkp1 )
613 90 CONTINUE
614 ap( j+( k-1 )*( 2*n-k ) / 2 ) = wk
615 ap( j+k*( 2*n-k-1 ) / 2 ) = wkp1
616 ap( j+( j-1 )*( 2*n-j ) / 2 )
617 $ = cmplx( real( ap( j+( j-1 )*( 2*n-j ) / 2 ) ),
618 $ 0.0e+0 )
619 100 CONTINUE
620 END IF
621 END IF
622 END IF
623*
624* Store details of the interchanges in IPIV
625*
626 IF( kstep.EQ.1 ) THEN
627 ipiv( k ) = kp
628 ELSE
629 ipiv( k ) = -kp
630 ipiv( k+1 ) = -kp
631 END IF
632*
633* Increase K and return to the start of the main loop
634*
635 k = k + kstep
636 kc = knc + n - k + 2
637 GO TO 60
638*
639 END IF
640*
641 110 CONTINUE
642 RETURN
643*
644* End of CHPTRF
645*
646 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chpr(uplo, n, alpha, x, incx, ap)
CHPR
Definition chpr.f:130
subroutine chptrf(uplo, n, ap, ipiv, info)
CHPTRF
Definition chptrf.f:157
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
subroutine cswap(n, cx, incx, cy, incy)
CSWAP
Definition cswap.f:81