LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ csycon_3()

subroutine csycon_3 ( character  uplo,
integer  n,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( * )  e,
integer, dimension( * )  ipiv,
real  anorm,
real  rcond,
complex, dimension( * )  work,
integer  info 
)

CSYCON_3

Download CSYCON_3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CSYCON_3 estimates the reciprocal of the condition number (in the
 1-norm) of a complex symmetric matrix A using the factorization
 computed by CSYTRF_RK or CSYTRF_BK:

    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

 where U (or L) is unit upper (or lower) triangular matrix,
 U**T (or L**T) is the transpose of U (or L), P is a permutation
 matrix, P**T is the transpose of P, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 An estimate is obtained for norm(inv(A)), and the reciprocal of the
 condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 This routine uses BLAS3 solver CSYTRS_3.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are
          stored as an upper or lower triangular matrix:
          = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
          = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
          Diagonal of the block diagonal matrix D and factors U or L
          as computed by CSYTRF_RK and CSYTRF_BK:
            a) ONLY diagonal elements of the symmetric block diagonal
               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
               (superdiagonal (or subdiagonal) elements of D
                should be provided on entry in array E), and
            b) If UPLO = 'U': factor U in the superdiagonal part of A.
               If UPLO = 'L': factor L in the subdiagonal part of A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]E
          E is COMPLEX array, dimension (N)
          On entry, contains the superdiagonal (or subdiagonal)
          elements of the symmetric block diagonal matrix D
          with 1-by-1 or 2-by-2 diagonal blocks, where
          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

          NOTE: For 1-by-1 diagonal block D(k), where
          1 <= k <= N, the element E(k) is not referenced in both
          UPLO = 'U' or UPLO = 'L' cases.
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by CSYTRF_RK or CSYTRF_BK.
[in]ANORM
          ANORM is REAL
          The 1-norm of the original matrix A.
[out]RCOND
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
          estimate of the 1-norm of inv(A) computed in this routine.
[out]WORK
          WORK is COMPLEX array, dimension (2*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
  June 2017,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                  School of Mathematics,
                  University of Manchester

Definition at line 164 of file csycon_3.f.

166*
167* -- LAPACK computational routine --
168* -- LAPACK is a software package provided by Univ. of Tennessee, --
169* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
170*
171* .. Scalar Arguments ..
172 CHARACTER UPLO
173 INTEGER INFO, LDA, N
174 REAL ANORM, RCOND
175* ..
176* .. Array Arguments ..
177 INTEGER IPIV( * )
178 COMPLEX A( LDA, * ), E( * ), WORK( * )
179* ..
180*
181* =====================================================================
182*
183* .. Parameters ..
184 REAL ONE, ZERO
185 parameter( one = 1.0e+0, zero = 0.0e+0 )
186 COMPLEX CZERO
187 parameter( czero = ( 0.0e+0, 0.0e+0 ) )
188* ..
189* .. Local Scalars ..
190 LOGICAL UPPER
191 INTEGER I, KASE
192 REAL AINVNM
193* ..
194* .. Local Arrays ..
195 INTEGER ISAVE( 3 )
196* ..
197* .. External Functions ..
198 LOGICAL LSAME
199 EXTERNAL lsame
200* ..
201* .. External Subroutines ..
202 EXTERNAL clacn2, csytrs_3, xerbla
203* ..
204* .. Intrinsic Functions ..
205 INTRINSIC max
206* ..
207* .. Executable Statements ..
208*
209* Test the input parameters.
210*
211 info = 0
212 upper = lsame( uplo, 'U' )
213 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
214 info = -1
215 ELSE IF( n.LT.0 ) THEN
216 info = -2
217 ELSE IF( lda.LT.max( 1, n ) ) THEN
218 info = -4
219 ELSE IF( anorm.LT.zero ) THEN
220 info = -7
221 END IF
222 IF( info.NE.0 ) THEN
223 CALL xerbla( 'CSYCON_3', -info )
224 RETURN
225 END IF
226*
227* Quick return if possible
228*
229 rcond = zero
230 IF( n.EQ.0 ) THEN
231 rcond = one
232 RETURN
233 ELSE IF( anorm.LE.zero ) THEN
234 RETURN
235 END IF
236*
237* Check that the diagonal matrix D is nonsingular.
238*
239 IF( upper ) THEN
240*
241* Upper triangular storage: examine D from bottom to top
242*
243 DO i = n, 1, -1
244 IF( ipiv( i ).GT.0 .AND. a( i, i ).EQ.czero )
245 $ RETURN
246 END DO
247 ELSE
248*
249* Lower triangular storage: examine D from top to bottom.
250*
251 DO i = 1, n
252 IF( ipiv( i ).GT.0 .AND. a( i, i ).EQ.czero )
253 $ RETURN
254 END DO
255 END IF
256*
257* Estimate the 1-norm of the inverse.
258*
259 kase = 0
260 30 CONTINUE
261 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
262 IF( kase.NE.0 ) THEN
263*
264* Multiply by inv(L*D*L**T) or inv(U*D*U**T).
265*
266 CALL csytrs_3( uplo, n, 1, a, lda, e, ipiv, work, n, info )
267 GO TO 30
268 END IF
269*
270* Compute the estimate of the reciprocal condition number.
271*
272 IF( ainvnm.NE.zero )
273 $ rcond = ( one / ainvnm ) / anorm
274*
275 RETURN
276*
277* End of CSYCON_3
278*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine csytrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
CSYTRS_3
Definition csytrs_3.f:165
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: