134
135
136
137
138
139
140 CHARACTER UPLO
141 INTEGER INFO, LDA, LDB, N, NRHS
142
143
144 INTEGER IPIV( * )
145 COMPLEX A( LDA, * ), B( LDB, * )
146
147
148
149
150
151 COMPLEX ONE
152 parameter( one = ( 1.0e+0, 0.0e+0 ) )
153
154
155 LOGICAL UPPER
156 INTEGER J, K, KP
157 REAL S
158 COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
159
160
161 LOGICAL LSAME
163
164
167
168
169 INTRINSIC conjg, max, real
170
171
172
173 info = 0
174 upper =
lsame( uplo,
'U' )
175 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
176 info = -1
177 ELSE IF( n.LT.0 ) THEN
178 info = -2
179 ELSE IF( nrhs.LT.0 ) THEN
180 info = -3
181 ELSE IF( lda.LT.max( 1, n ) ) THEN
182 info = -5
183 ELSE IF( ldb.LT.max( 1, n ) ) THEN
184 info = -8
185 END IF
186 IF( info.NE.0 ) THEN
187 CALL xerbla(
'CHETRS_ROOK', -info )
188 RETURN
189 END IF
190
191
192
193 IF( n.EQ.0 .OR. nrhs.EQ.0 )
194 $ RETURN
195
196 IF( upper ) THEN
197
198
199
200
201
202
203
204
205 k = n
206 10 CONTINUE
207
208
209
210 IF( k.LT.1 )
211 $ GO TO 30
212
213 IF( ipiv( k ).GT.0 ) THEN
214
215
216
217
218
219 kp = ipiv( k )
220 IF( kp.NE.k )
221 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
222
223
224
225
226 CALL cgeru( k-1, nrhs, -one, a( 1, k ), 1, b( k, 1 ),
227 $ ldb,
228 $ b( 1, 1 ), ldb )
229
230
231
232 s = real( one ) / real( a( k, k ) )
233 CALL csscal( nrhs, s, b( k, 1 ), ldb )
234 k = k - 1
235 ELSE
236
237
238
239
240
241 kp = -ipiv( k )
242 IF( kp.NE.k )
243 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
244
245 kp = -ipiv( k-1)
246 IF( kp.NE.k-1 )
247 $
CALL cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ), ldb )
248
249
250
251
252 CALL cgeru( k-2, nrhs, -one, a( 1, k ), 1, b( k, 1 ),
253 $ ldb,
254 $ b( 1, 1 ), ldb )
255 CALL cgeru( k-2, nrhs, -one, a( 1, k-1 ), 1, b( k-1, 1 ),
256 $ ldb, b( 1, 1 ), ldb )
257
258
259
260 akm1k = a( k-1, k )
261 akm1 = a( k-1, k-1 ) / akm1k
262 ak = a( k, k ) / conjg( akm1k )
263 denom = akm1*ak - one
264 DO 20 j = 1, nrhs
265 bkm1 = b( k-1, j ) / akm1k
266 bk = b( k, j ) / conjg( akm1k )
267 b( k-1, j ) = ( ak*bkm1-bk ) / denom
268 b( k, j ) = ( akm1*bk-bkm1 ) / denom
269 20 CONTINUE
270 k = k - 2
271 END IF
272
273 GO TO 10
274 30 CONTINUE
275
276
277
278
279
280
281 k = 1
282 40 CONTINUE
283
284
285
286 IF( k.GT.n )
287 $ GO TO 50
288
289 IF( ipiv( k ).GT.0 ) THEN
290
291
292
293
294
295
296 IF( k.GT.1 ) THEN
297 CALL clacgv( nrhs, b( k, 1 ), ldb )
298 CALL cgemv(
'Conjugate transpose', k-1, nrhs, -one, b,
299 $ ldb, a( 1, k ), 1, one, b( k, 1 ), ldb )
300 CALL clacgv( nrhs, b( k, 1 ), ldb )
301 END IF
302
303
304
305 kp = ipiv( k )
306 IF( kp.NE.k )
307 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
308 k = k + 1
309 ELSE
310
311
312
313
314
315
316 IF( k.GT.1 ) THEN
317 CALL clacgv( nrhs, b( k, 1 ), ldb )
318 CALL cgemv(
'Conjugate transpose', k-1, nrhs, -one, b,
319 $ ldb, a( 1, k ), 1, one, b( k, 1 ), ldb )
320 CALL clacgv( nrhs, b( k, 1 ), ldb )
321
322 CALL clacgv( nrhs, b( k+1, 1 ), ldb )
323 CALL cgemv(
'Conjugate transpose', k-1, nrhs, -one, b,
324 $ ldb, a( 1, k+1 ), 1, one, b( k+1, 1 ), ldb )
325 CALL clacgv( nrhs, b( k+1, 1 ), ldb )
326 END IF
327
328
329
330 kp = -ipiv( k )
331 IF( kp.NE.k )
332 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
333
334 kp = -ipiv( k+1 )
335 IF( kp.NE.k+1 )
336 $
CALL cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ), ldb )
337
338 k = k + 2
339 END IF
340
341 GO TO 40
342 50 CONTINUE
343
344 ELSE
345
346
347
348
349
350
351
352
353 k = 1
354 60 CONTINUE
355
356
357
358 IF( k.GT.n )
359 $ GO TO 80
360
361 IF( ipiv( k ).GT.0 ) THEN
362
363
364
365
366
367 kp = ipiv( k )
368 IF( kp.NE.k )
369 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
370
371
372
373
374 IF( k.LT.n )
375 $
CALL cgeru( n-k, nrhs, -one, a( k+1, k ), 1, b( k,
376 $ 1 ),
377 $ ldb, b( k+1, 1 ), ldb )
378
379
380
381 s = real( one ) / real( a( k, k ) )
382 CALL csscal( nrhs, s, b( k, 1 ), ldb )
383 k = k + 1
384 ELSE
385
386
387
388
389
390 kp = -ipiv( k )
391 IF( kp.NE.k )
392 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
393
394 kp = -ipiv( k+1 )
395 IF( kp.NE.k+1 )
396 $
CALL cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ), ldb )
397
398
399
400
401 IF( k.LT.n-1 ) THEN
402 CALL cgeru( n-k-1, nrhs, -one, a( k+2, k ), 1, b( k,
403 $ 1 ),
404 $ ldb, b( k+2, 1 ), ldb )
405 CALL cgeru( n-k-1, nrhs, -one, a( k+2, k+1 ), 1,
406 $ b( k+1, 1 ), ldb, b( k+2, 1 ), ldb )
407 END IF
408
409
410
411 akm1k = a( k+1, k )
412 akm1 = a( k, k ) / conjg( akm1k )
413 ak = a( k+1, k+1 ) / akm1k
414 denom = akm1*ak - one
415 DO 70 j = 1, nrhs
416 bkm1 = b( k, j ) / conjg( akm1k )
417 bk = b( k+1, j ) / akm1k
418 b( k, j ) = ( ak*bkm1-bk ) / denom
419 b( k+1, j ) = ( akm1*bk-bkm1 ) / denom
420 70 CONTINUE
421 k = k + 2
422 END IF
423
424 GO TO 60
425 80 CONTINUE
426
427
428
429
430
431
432 k = n
433 90 CONTINUE
434
435
436
437 IF( k.LT.1 )
438 $ GO TO 100
439
440 IF( ipiv( k ).GT.0 ) THEN
441
442
443
444
445
446
447 IF( k.LT.n ) THEN
448 CALL clacgv( nrhs, b( k, 1 ), ldb )
449 CALL cgemv(
'Conjugate transpose', n-k, nrhs, -one,
450 $ b( k+1, 1 ), ldb, a( k+1, k ), 1, one,
451 $ b( k, 1 ), ldb )
452 CALL clacgv( nrhs, b( k, 1 ), ldb )
453 END IF
454
455
456
457 kp = ipiv( k )
458 IF( kp.NE.k )
459 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
460 k = k - 1
461 ELSE
462
463
464
465
466
467
468 IF( k.LT.n ) THEN
469 CALL clacgv( nrhs, b( k, 1 ), ldb )
470 CALL cgemv(
'Conjugate transpose', n-k, nrhs, -one,
471 $ b( k+1, 1 ), ldb, a( k+1, k ), 1, one,
472 $ b( k, 1 ), ldb )
473 CALL clacgv( nrhs, b( k, 1 ), ldb )
474
475 CALL clacgv( nrhs, b( k-1, 1 ), ldb )
476 CALL cgemv(
'Conjugate transpose', n-k, nrhs, -one,
477 $ b( k+1, 1 ), ldb, a( k+1, k-1 ), 1, one,
478 $ b( k-1, 1 ), ldb )
479 CALL clacgv( nrhs, b( k-1, 1 ), ldb )
480 END IF
481
482
483
484 kp = -ipiv( k )
485 IF( kp.NE.k )
486 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
487
488 kp = -ipiv( k-1 )
489 IF( kp.NE.k-1 )
490 $
CALL cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ), ldb )
491
492 k = k - 2
493 END IF
494
495 GO TO 90
496 100 CONTINUE
497 END IF
498
499 RETURN
500
501
502
subroutine xerbla(srname, info)
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
subroutine cgeru(m, n, alpha, x, incx, y, incy, a, lda)
CGERU
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
logical function lsame(ca, cb)
LSAME
subroutine csscal(n, sa, cx, incx)
CSSCAL
subroutine cswap(n, cx, incx, cy, incy)
CSWAP