LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
schkaa.F
Go to the documentation of this file.
1*> \brief \b SCHKAA
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* PROGRAM SCHKAA
12*
13*
14*> \par Purpose:
15* =============
16*>
17*> \verbatim
18*>
19*> SCHKAA is the main test program for the REAL LAPACK
20*> linear equation routines
21*>
22*> The program must be driven by a short data file. The first 15 records
23*> (not including the first comment line) specify problem dimensions
24*> and program options using list-directed input. The remaining lines
25*> specify the LAPACK test paths and the number of matrix types to use
26*> in testing. An annotated example of a data file can be obtained by
27*> deleting the first 3 characters from the following 40 lines:
28*> Data file for testing REAL LAPACK linear eqn. routines
29*> 7 Number of values of M
30*> 0 1 2 3 5 10 16 Values of M (row dimension)
31*> 7 Number of values of N
32*> 0 1 2 3 5 10 16 Values of N (column dimension)
33*> 1 Number of values of NRHS
34*> 2 Values of NRHS (number of right hand sides)
35*> 5 Number of values of NB
36*> 1 3 3 3 20 Values of NB (the blocksize)
37*> 1 0 5 9 1 Values of NX (crossover point)
38*> 3 Number of values of RANK
39*> 30 50 90 Values of rank (as a % of N)
40*> 20.0 Threshold value of test ratio
41*> T Put T to test the LAPACK routines
42*> T Put T to test the driver routines
43*> T Put T to test the error exits
44*> SGE 11 List types on next line if 0 < NTYPES < 11
45*> SGB 8 List types on next line if 0 < NTYPES < 8
46*> SGT 12 List types on next line if 0 < NTYPES < 12
47*> SPO 9 List types on next line if 0 < NTYPES < 9
48*> SPS 9 List types on next line if 0 < NTYPES < 9
49*> SPP 9 List types on next line if 0 < NTYPES < 9
50*> SPB 8 List types on next line if 0 < NTYPES < 8
51*> SPT 12 List types on next line if 0 < NTYPES < 12
52*> SSY 10 List types on next line if 0 < NTYPES < 10
53*> SSR 10 List types on next line if 0 < NTYPES < 10
54*> SSK 10 List types on next line if 0 < NTYPES < 10
55*> SSA 10 List types on next line if 0 < NTYPES < 10
56*> SS2 10 List types on next line if 0 < NTYPES < 10
57*> SSP 10 List types on next line if 0 < NTYPES < 10
58*> STR 18 List types on next line if 0 < NTYPES < 18
59*> STP 18 List types on next line if 0 < NTYPES < 18
60*> STB 17 List types on next line if 0 < NTYPES < 17
61*> SQR 8 List types on next line if 0 < NTYPES < 8
62*> SRQ 8 List types on next line if 0 < NTYPES < 8
63*> SLQ 8 List types on next line if 0 < NTYPES < 8
64*> SQL 8 List types on next line if 0 < NTYPES < 8
65*> SQP 6 List types on next line if 0 < NTYPES < 6
66*> DQK 19 List types on next line if 0 < NTYPES < 19
67*> STZ 3 List types on next line if 0 < NTYPES < 3
68*> SLS 6 List types on next line if 0 < NTYPES < 6
69*> SEQ
70*> SQT
71*> SQX
72*> STS
73*> SHH
74*> \endverbatim
75*
76* Parameters:
77* ==========
78*
79*> \verbatim
80*> NMAX INTEGER
81*> The maximum allowable value for M and N.
82*>
83*> MAXIN INTEGER
84*> The number of different values that can be used for each of
85*> M, N, NRHS, NB, NX and RANK
86*>
87*> MAXRHS INTEGER
88*> The maximum number of right hand sides
89*>
90*> MATMAX INTEGER
91*> The maximum number of matrix types to use for testing
92*>
93*> NIN INTEGER
94*> The unit number for input
95*>
96*> NOUT INTEGER
97*> The unit number for output
98*> \endverbatim
99*
100* Authors:
101* ========
102*
103*> \author Univ. of Tennessee
104*> \author Univ. of California Berkeley
105*> \author Univ. of Colorado Denver
106*> \author NAG Ltd.
107*
108*> \ingroup single_lin
109*
110* =====================================================================
111 PROGRAM schkaa
112*
113* -- LAPACK test routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* =====================================================================
118*
119* .. Parameters ..
120 INTEGER nmax
121 parameter( nmax = 132 )
122 INTEGER maxin
123 parameter( maxin = 12 )
124 INTEGER maxrhs
125 parameter( maxrhs = 16 )
126 INTEGER matmax
127 parameter( matmax = 30 )
128 INTEGER nin, nout
129 parameter( nin = 5, nout = 6 )
130 INTEGER kdmax
131 parameter( kdmax = nmax+( nmax+1 ) / 4 )
132* ..
133* .. Local Scalars ..
134 LOGICAL fatal, tstchk, tstdrv, tsterr
135 CHARACTER c1
136 CHARACTER*2 c2
137 CHARACTER*3 path
138 CHARACTER*10 intstr
139 CHARACTER*72 aline
140 INTEGER i, ic, j, k, la, lafac, lda, nb, nm, nmats, nn,
141 $ nnb, nnb2, nns, nrhs, ntypes, nrank,
142 $ vers_major, vers_minor, vers_patch
143 REAL eps, s1, s2, threq, thresh
144* ..
145* .. Local Arrays ..
146 LOGICAL dotype( matmax )
147 INTEGER iwork( 25*nmax ), mval( maxin ),
148 $ nbval( maxin ), nbval2( maxin ),
149 $ nsval( maxin ), nval( maxin ), nxval( maxin ),
150 $ rankval( maxin ), piv( nmax )
151* ..
152* .. Allocatable Arrays ..
153 INTEGER allocatestatus
154 REAL, DIMENSION(:), ALLOCATABLE :: rwork, s
155 REAL, DIMENSION(:), ALLOCATABLE :: e
156 REAL, DIMENSION(:,:), ALLOCATABLE :: a, b, work
157* ..
158* .. External Functions ..
159 LOGICAL lsame, lsamen
160 REAL second, slamch
161 EXTERNAL lsame, lsamen, second, slamch
162* ..
163* .. External Subroutines ..
164 EXTERNAL alareq, schkeq, schkgb, schkge, schkgt, schklq,
173* ..
174* .. Scalars in Common ..
175 LOGICAL lerr, ok
176 CHARACTER*32 srnamt
177 INTEGER infot, nunit
178* ..
179* .. Arrays in Common ..
180 INTEGER iparms( 100 )
181* ..
182* .. Common blocks ..
183 COMMON / claenv / iparms
184 COMMON / infoc / infot, nunit, ok, lerr
185 COMMON / srnamc / srnamt
186* ..
187* .. Data statements ..
188 DATA threq / 2.0e0 / , intstr / '0123456789' /
189* ..
190* .. Allocate memory dynamically ..
191*
192 ALLOCATE ( a( ( kdmax+1 )*nmax, 7 ), stat = allocatestatus )
193 IF (allocatestatus /= 0) stop "*** Not enough memory ***"
194 ALLOCATE ( b( nmax*maxrhs, 4 ), stat = allocatestatus )
195 IF (allocatestatus /= 0) stop "*** Not enough memory ***"
196 ALLOCATE ( work( nmax, 3*nmax+maxrhs+30 ), stat = allocatestatus )
197 IF (allocatestatus /= 0) stop "*** Not enough memory ***"
198 ALLOCATE ( e( nmax ), stat = allocatestatus )
199 IF (allocatestatus /= 0) stop "*** Not enough memory ***"
200 ALLOCATE ( s( 2*nmax ), stat = allocatestatus )
201 IF (allocatestatus /= 0) stop "*** Not enough memory ***"
202 ALLOCATE ( rwork( 5*nmax+2*maxrhs ), stat = allocatestatus )
203 IF (allocatestatus /= 0) stop "*** Not enough memory ***"
204* ..
205* .. Executable Statements ..
206*
207 s1 = second( )
208 lda = nmax
209 fatal = .false.
210*
211* Read a dummy line.
212*
213 READ( nin, fmt = * )
214*
215* Report values of parameters.
216*
217 CALL ilaver( vers_major, vers_minor, vers_patch )
218 WRITE( nout, fmt = 9994 ) vers_major, vers_minor, vers_patch
219*
220* Read the values of M
221*
222 READ( nin, fmt = * )nm
223 IF( nm.LT.1 ) THEN
224 WRITE( nout, fmt = 9996 )' NM ', nm, 1
225 nm = 0
226 fatal = .true.
227 ELSE IF( nm.GT.maxin ) THEN
228 WRITE( nout, fmt = 9995 )' NM ', nm, maxin
229 nm = 0
230 fatal = .true.
231 END IF
232 READ( nin, fmt = * )( mval( i ), i = 1, nm )
233 DO 10 i = 1, nm
234 IF( mval( i ).LT.0 ) THEN
235 WRITE( nout, fmt = 9996 )' M ', mval( i ), 0
236 fatal = .true.
237 ELSE IF( mval( i ).GT.nmax ) THEN
238 WRITE( nout, fmt = 9995 )' M ', mval( i ), nmax
239 fatal = .true.
240 END IF
241 10 CONTINUE
242 IF( nm.GT.0 )
243 $ WRITE( nout, fmt = 9993 )'M ', ( mval( i ), i = 1, nm )
244*
245* Read the values of N
246*
247 READ( nin, fmt = * )nn
248 IF( nn.LT.1 ) THEN
249 WRITE( nout, fmt = 9996 )' NN ', nn, 1
250 nn = 0
251 fatal = .true.
252 ELSE IF( nn.GT.maxin ) THEN
253 WRITE( nout, fmt = 9995 )' NN ', nn, maxin
254 nn = 0
255 fatal = .true.
256 END IF
257 READ( nin, fmt = * )( nval( i ), i = 1, nn )
258 DO 20 i = 1, nn
259 IF( nval( i ).LT.0 ) THEN
260 WRITE( nout, fmt = 9996 )' N ', nval( i ), 0
261 fatal = .true.
262 ELSE IF( nval( i ).GT.nmax ) THEN
263 WRITE( nout, fmt = 9995 )' N ', nval( i ), nmax
264 fatal = .true.
265 END IF
266 20 CONTINUE
267 IF( nn.GT.0 )
268 $ WRITE( nout, fmt = 9993 )'N ', ( nval( i ), i = 1, nn )
269*
270* Read the values of NRHS
271*
272 READ( nin, fmt = * )nns
273 IF( nns.LT.1 ) THEN
274 WRITE( nout, fmt = 9996 )' NNS', nns, 1
275 nns = 0
276 fatal = .true.
277 ELSE IF( nns.GT.maxin ) THEN
278 WRITE( nout, fmt = 9995 )' NNS', nns, maxin
279 nns = 0
280 fatal = .true.
281 END IF
282 READ( nin, fmt = * )( nsval( i ), i = 1, nns )
283 DO 30 i = 1, nns
284 IF( nsval( i ).LT.0 ) THEN
285 WRITE( nout, fmt = 9996 )'NRHS', nsval( i ), 0
286 fatal = .true.
287 ELSE IF( nsval( i ).GT.maxrhs ) THEN
288 WRITE( nout, fmt = 9995 )'NRHS', nsval( i ), maxrhs
289 fatal = .true.
290 END IF
291 30 CONTINUE
292 IF( nns.GT.0 )
293 $ WRITE( nout, fmt = 9993 )'NRHS', ( nsval( i ), i = 1, nns )
294*
295* Read the values of NB
296*
297 READ( nin, fmt = * )nnb
298 IF( nnb.LT.1 ) THEN
299 WRITE( nout, fmt = 9996 )'NNB ', nnb, 1
300 nnb = 0
301 fatal = .true.
302 ELSE IF( nnb.GT.maxin ) THEN
303 WRITE( nout, fmt = 9995 )'NNB ', nnb, maxin
304 nnb = 0
305 fatal = .true.
306 END IF
307 READ( nin, fmt = * )( nbval( i ), i = 1, nnb )
308 DO 40 i = 1, nnb
309 IF( nbval( i ).LT.0 ) THEN
310 WRITE( nout, fmt = 9996 )' NB ', nbval( i ), 0
311 fatal = .true.
312 END IF
313 40 CONTINUE
314 IF( nnb.GT.0 )
315 $ WRITE( nout, fmt = 9993 )'NB ', ( nbval( i ), i = 1, nnb )
316*
317* Set NBVAL2 to be the set of unique values of NB
318*
319 nnb2 = 0
320 DO 60 i = 1, nnb
321 nb = nbval( i )
322 DO 50 j = 1, nnb2
323 IF( nb.EQ.nbval2( j ) )
324 $ GO TO 60
325 50 CONTINUE
326 nnb2 = nnb2 + 1
327 nbval2( nnb2 ) = nb
328 60 CONTINUE
329*
330* Read the values of NX
331*
332 READ( nin, fmt = * )( nxval( i ), i = 1, nnb )
333 DO 70 i = 1, nnb
334 IF( nxval( i ).LT.0 ) THEN
335 WRITE( nout, fmt = 9996 )' NX ', nxval( i ), 0
336 fatal = .true.
337 END IF
338 70 CONTINUE
339 IF( nnb.GT.0 )
340 $ WRITE( nout, fmt = 9993 )'NX ', ( nxval( i ), i = 1, nnb )
341*
342* Read the values of RANKVAL
343*
344 READ( nin, fmt = * )nrank
345 IF( nn.LT.1 ) THEN
346 WRITE( nout, fmt = 9996 )' NRANK ', nrank, 1
347 nrank = 0
348 fatal = .true.
349 ELSE IF( nn.GT.maxin ) THEN
350 WRITE( nout, fmt = 9995 )' NRANK ', nrank, maxin
351 nrank = 0
352 fatal = .true.
353 END IF
354 READ( nin, fmt = * )( rankval( i ), i = 1, nrank )
355 DO i = 1, nrank
356 IF( rankval( i ).LT.0 ) THEN
357 WRITE( nout, fmt = 9996 )' RANK ', rankval( i ), 0
358 fatal = .true.
359 ELSE IF( rankval( i ).GT.100 ) THEN
360 WRITE( nout, fmt = 9995 )' RANK ', rankval( i ), 100
361 fatal = .true.
362 END IF
363 END DO
364 IF( nrank.GT.0 )
365 $ WRITE( nout, fmt = 9993 )'RANK % OF N',
366 $ ( rankval( i ), i = 1, nrank )
367*
368* Read the threshold value for the test ratios.
369*
370 READ( nin, fmt = * )thresh
371 WRITE( nout, fmt = 9992 )thresh
372*
373* Read the flag that indicates whether to test the LAPACK routines.
374*
375 READ( nin, fmt = * )tstchk
376*
377* Read the flag that indicates whether to test the driver routines.
378*
379 READ( nin, fmt = * )tstdrv
380*
381* Read the flag that indicates whether to test the error exits.
382*
383 READ( nin, fmt = * )tsterr
384*
385 IF( fatal ) THEN
386 WRITE( nout, fmt = 9999 )
387 stop
388 END IF
389*
390* Calculate and print the machine dependent constants.
391*
392 eps = slamch( 'Underflow threshold' )
393 WRITE( nout, fmt = 9991 )'underflow', eps
394 eps = slamch( 'Overflow threshold' )
395 WRITE( nout, fmt = 9991 )'overflow ', eps
396 eps = slamch( 'Epsilon' )
397 WRITE( nout, fmt = 9991 )'precision', eps
398 WRITE( nout, fmt = * )
399*
400 80 CONTINUE
401*
402* Read a test path and the number of matrix types to use.
403*
404 READ( nin, fmt = '(A72)', END = 140 )aline
405 path = aline( 1: 3 )
406 nmats = matmax
407 i = 3
408 90 CONTINUE
409 i = i + 1
410 IF( i.GT.72 ) THEN
411 nmats = matmax
412 GO TO 130
413 END IF
414 IF( aline( i: i ).EQ.' ' )
415 $ GO TO 90
416 nmats = 0
417 100 CONTINUE
418 c1 = aline( i: i )
419 DO 110 k = 1, 10
420 IF( c1.EQ.intstr( k: k ) ) THEN
421 ic = k - 1
422 GO TO 120
423 END IF
424 110 CONTINUE
425 GO TO 130
426 120 CONTINUE
427 nmats = nmats*10 + ic
428 i = i + 1
429 IF( i.GT.72 )
430 $ GO TO 130
431 GO TO 100
432 130 CONTINUE
433 c1 = path( 1: 1 )
434 c2 = path( 2: 3 )
435 nrhs = nsval( 1 )
436*
437* Check first character for correct precision.
438*
439 IF( .NOT.lsame( c1, 'Single precision' ) ) THEN
440 WRITE( nout, fmt = 9990 )path
441*
442 ELSE IF( nmats.LE.0 ) THEN
443*
444* Check for a positive number of tests requested.
445*
446 WRITE( nout, fmt = 9989 )path
447*
448 ELSE IF( lsamen( 2, c2, 'GE' ) ) THEN
449*
450* GE: general matrices
451*
452 ntypes = 11
453 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
454*
455 IF( tstchk ) THEN
456 CALL schkge( dotype, nm, mval, nn, nval, nnb2, nbval2, nns,
457 $ nsval, thresh, tsterr, lda, a( 1, 1 ),
458 $ a( 1, 2 ), a( 1, 3 ), b( 1, 1 ), b( 1, 2 ),
459 $ b( 1, 3 ), work, rwork, iwork, nout )
460 ELSE
461 WRITE( nout, fmt = 9989 )path
462 END IF
463*
464 IF( tstdrv ) THEN
465 CALL sdrvge( dotype, nn, nval, nrhs, thresh, tsterr, lda,
466 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
467 $ b( 1, 2 ), b( 1, 3 ), b( 1, 4 ), s, work,
468 $ rwork, iwork, nout )
469 ELSE
470 WRITE( nout, fmt = 9988 )path
471 END IF
472*
473 ELSE IF( lsamen( 2, c2, 'GB' ) ) THEN
474*
475* GB: general banded matrices
476*
477 la = ( 2*kdmax+1 )*nmax
478 lafac = ( 3*kdmax+1 )*nmax
479 ntypes = 8
480 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
481*
482 IF( tstchk ) THEN
483 CALL schkgb( dotype, nm, mval, nn, nval, nnb2, nbval2, nns,
484 $ nsval, thresh, tsterr, a( 1, 1 ), la,
485 $ a( 1, 3 ), lafac, b( 1, 1 ), b( 1, 2 ),
486 $ b( 1, 3 ), work, rwork, iwork, nout )
487 ELSE
488 WRITE( nout, fmt = 9989 )path
489 END IF
490*
491 IF( tstdrv ) THEN
492 CALL sdrvgb( dotype, nn, nval, nrhs, thresh, tsterr,
493 $ a( 1, 1 ), la, a( 1, 3 ), lafac, a( 1, 6 ),
494 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), b( 1, 4 ), s,
495 $ work, rwork, iwork, nout )
496 ELSE
497 WRITE( nout, fmt = 9988 )path
498 END IF
499*
500 ELSE IF( lsamen( 2, c2, 'GT' ) ) THEN
501*
502* GT: general tridiagonal matrices
503*
504 ntypes = 12
505 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
506*
507 IF( tstchk ) THEN
508 CALL schkgt( dotype, nn, nval, nns, nsval, thresh, tsterr,
509 $ a( 1, 1 ), a( 1, 2 ), b( 1, 1 ), b( 1, 2 ),
510 $ b( 1, 3 ), work, rwork, iwork, nout )
511 ELSE
512 WRITE( nout, fmt = 9989 )path
513 END IF
514*
515 IF( tstdrv ) THEN
516 CALL sdrvgt( dotype, nn, nval, nrhs, thresh, tsterr,
517 $ a( 1, 1 ), a( 1, 2 ), b( 1, 1 ), b( 1, 2 ),
518 $ b( 1, 3 ), work, rwork, iwork, nout )
519 ELSE
520 WRITE( nout, fmt = 9988 )path
521 END IF
522*
523 ELSE IF( lsamen( 2, c2, 'PO' ) ) THEN
524*
525* PO: positive definite matrices
526*
527 ntypes = 9
528 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
529*
530 IF( tstchk ) THEN
531 CALL schkpo( dotype, nn, nval, nnb2, nbval2, nns, nsval,
532 $ thresh, tsterr, lda, a( 1, 1 ), a( 1, 2 ),
533 $ a( 1, 3 ), b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
534 $ work, rwork, iwork, nout )
535 ELSE
536 WRITE( nout, fmt = 9989 )path
537 END IF
538*
539 IF( tstdrv ) THEN
540 CALL sdrvpo( dotype, nn, nval, nrhs, thresh, tsterr, lda,
541 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
542 $ b( 1, 2 ), b( 1, 3 ), b( 1, 4 ), s, work,
543 $ rwork, iwork, nout )
544 ELSE
545 WRITE( nout, fmt = 9988 )path
546 END IF
547*
548 ELSE IF( lsamen( 2, c2, 'PS' ) ) THEN
549*
550* PS: positive semi-definite matrices
551*
552 ntypes = 9
553*
554 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
555*
556 IF( tstchk ) THEN
557 CALL schkps( dotype, nn, nval, nnb2, nbval2, nrank,
558 $ rankval, thresh, tsterr, lda, a( 1, 1 ),
559 $ a( 1, 2 ), a( 1, 3 ), piv, work, rwork,
560 $ nout )
561 ELSE
562 WRITE( nout, fmt = 9989 )path
563 END IF
564*
565 ELSE IF( lsamen( 2, c2, 'PP' ) ) THEN
566*
567* PP: positive definite packed matrices
568*
569 ntypes = 9
570 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
571*
572 IF( tstchk ) THEN
573 CALL schkpp( dotype, nn, nval, nns, nsval, thresh, tsterr,
574 $ lda, a( 1, 1 ), a( 1, 2 ), a( 1, 3 ),
575 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), work, rwork,
576 $ iwork, nout )
577 ELSE
578 WRITE( nout, fmt = 9989 )path
579 END IF
580*
581 IF( tstdrv ) THEN
582 CALL sdrvpp( dotype, nn, nval, nrhs, thresh, tsterr, lda,
583 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
584 $ b( 1, 2 ), b( 1, 3 ), b( 1, 4 ), s, work,
585 $ rwork, iwork, nout )
586 ELSE
587 WRITE( nout, fmt = 9988 )path
588 END IF
589*
590 ELSE IF( lsamen( 2, c2, 'PB' ) ) THEN
591*
592* PB: positive definite banded matrices
593*
594 ntypes = 8
595 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
596*
597 IF( tstchk ) THEN
598 CALL schkpb( dotype, nn, nval, nnb2, nbval2, nns, nsval,
599 $ thresh, tsterr, lda, a( 1, 1 ), a( 1, 2 ),
600 $ a( 1, 3 ), b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
601 $ work, rwork, iwork, nout )
602 ELSE
603 WRITE( nout, fmt = 9989 )path
604 END IF
605*
606 IF( tstdrv ) THEN
607 CALL sdrvpb( dotype, nn, nval, nrhs, thresh, tsterr, lda,
608 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
609 $ b( 1, 2 ), b( 1, 3 ), b( 1, 4 ), s, work,
610 $ rwork, iwork, nout )
611 ELSE
612 WRITE( nout, fmt = 9988 )path
613 END IF
614*
615 ELSE IF( lsamen( 2, c2, 'PT' ) ) THEN
616*
617* PT: positive definite tridiagonal matrices
618*
619 ntypes = 12
620 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
621*
622 IF( tstchk ) THEN
623 CALL schkpt( dotype, nn, nval, nns, nsval, thresh, tsterr,
624 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
625 $ b( 1, 2 ), b( 1, 3 ), work, rwork, nout )
626 ELSE
627 WRITE( nout, fmt = 9989 )path
628 END IF
629*
630 IF( tstdrv ) THEN
631 CALL sdrvpt( dotype, nn, nval, nrhs, thresh, tsterr,
632 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
633 $ b( 1, 2 ), b( 1, 3 ), work, rwork, nout )
634 ELSE
635 WRITE( nout, fmt = 9988 )path
636 END IF
637*
638 ELSE IF( lsamen( 2, c2, 'SY' ) ) THEN
639*
640* SY: symmetric indefinite matrices,
641* with partial (Bunch-Kaufman) pivoting algorithm
642*
643 ntypes = 10
644 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
645*
646 IF( tstchk ) THEN
647 CALL schksy( dotype, nn, nval, nnb2, nbval2, nns, nsval,
648 $ thresh, tsterr, lda, a( 1, 1 ), a( 1, 2 ),
649 $ a( 1, 3 ), b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
650 $ work, rwork, iwork, nout )
651 ELSE
652 WRITE( nout, fmt = 9989 )path
653 END IF
654*
655 IF( tstdrv ) THEN
656 CALL sdrvsy( dotype, nn, nval, nrhs, thresh, tsterr, lda,
657 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
658 $ b( 1, 2 ), b( 1, 3 ), work, rwork, iwork,
659 $ nout )
660 ELSE
661 WRITE( nout, fmt = 9988 )path
662 END IF
663*
664 ELSE IF( lsamen( 2, c2, 'SR' ) ) THEN
665*
666* SR: symmetric indefinite matrices,
667* with bounded Bunch-Kaufman (rook) pivoting algorithm
668*
669 ntypes = 10
670 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
671*
672 IF( tstchk ) THEN
673 CALL schksy_rook(dotype, nn, nval, nnb2, nbval2, nns, nsval,
674 $ thresh, tsterr, lda, a( 1, 1 ), a( 1, 2 ),
675 $ a( 1, 3 ), b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
676 $ work, rwork, iwork, nout )
677 ELSE
678 WRITE( nout, fmt = 9989 )path
679 END IF
680*
681 IF( tstdrv ) THEN
682 CALL sdrvsy_rook( dotype, nn, nval, nrhs, thresh, tsterr,
683 $ lda, a( 1, 1 ), a( 1, 2 ), a( 1, 3 ),
684 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
685 $ work, rwork, iwork, nout )
686 ELSE
687 WRITE( nout, fmt = 9988 )path
688 END IF
689*
690 ELSE IF( lsamen( 2, c2, 'SK' ) ) THEN
691*
692* SK: symmetric indefinite matrices,
693* with bounded Bunch-Kaufman (rook) pivoting algorithm,
694* different matrix storage format than SR path version.
695*
696 ntypes = 10
697 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
698*
699 IF( tstchk ) THEN
700 CALL schksy_rk( dotype, nn, nval, nnb2, nbval2, nns, nsval,
701 $ thresh, tsterr, lda, a( 1, 1 ), a( 1, 2 ),
702 $ e, a( 1, 3 ), b( 1, 1 ), b( 1, 2 ),
703 $ b( 1, 3 ), work, rwork, iwork, nout )
704 ELSE
705 WRITE( nout, fmt = 9989 )path
706 END IF
707*
708 IF( tstdrv ) THEN
709 CALL sdrvsy_rk( dotype, nn, nval, nrhs, thresh, tsterr,
710 $ lda, a( 1, 1 ), a( 1, 2 ), e, a( 1, 3 ),
711 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
712 $ work, rwork, iwork, nout )
713 ELSE
714 WRITE( nout, fmt = 9988 )path
715 END IF
716*
717 ELSE IF( lsamen( 2, c2, 'SA' ) ) THEN
718*
719* SA: symmetric indefinite matrices,
720* with partial (Aasen's) pivoting algorithm
721*
722 ntypes = 10
723 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
724*
725 IF( tstchk ) THEN
726 CALL schksy_aa( dotype, nn, nval, nnb2, nbval2, nns,
727 $ nsval, thresh, tsterr, lda,
728 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ),
729 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
730 $ work, rwork, iwork, nout )
731 ELSE
732 WRITE( nout, fmt = 9989 )path
733 END IF
734*
735 IF( tstdrv ) THEN
736 CALL sdrvsy_aa( dotype, nn, nval, nrhs, thresh, tsterr,
737 $ lda, a( 1, 1 ), a( 1, 2 ), a( 1, 3 ),
738 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
739 $ work, rwork, iwork, nout )
740 ELSE
741 WRITE( nout, fmt = 9988 )path
742 END IF
743*
744 ELSE IF( lsamen( 2, c2, 'S2' ) ) THEN
745*
746* SA: symmetric indefinite matrices,
747* with partial (Aasen's) pivoting algorithm
748*
749 ntypes = 10
750 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
751*
752 IF( tstchk ) THEN
753 CALL schksy_aa_2stage( dotype, nn, nval, nnb2, nbval2,
754 $ nns, nsval, thresh, tsterr, lda,
755 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ),
756 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
757 $ work, rwork, iwork, nout )
758 ELSE
759 WRITE( nout, fmt = 9989 )path
760 END IF
761*
762 IF( tstdrv ) THEN
763 CALL sdrvsy_aa_2stage(
764 $ dotype, nn, nval, nrhs, thresh, tsterr,
765 $ lda, a( 1, 1 ), a( 1, 2 ), a( 1, 3 ),
766 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
767 $ work, rwork, iwork, nout )
768 ELSE
769 WRITE( nout, fmt = 9988 )path
770 END IF
771*
772 ELSE IF( lsamen( 2, c2, 'SP' ) ) THEN
773*
774* SP: symmetric indefinite packed matrices,
775* with partial (Bunch-Kaufman) pivoting algorithm
776*
777 ntypes = 10
778 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
779*
780 IF( tstchk ) THEN
781 CALL schksp( dotype, nn, nval, nns, nsval, thresh, tsterr,
782 $ lda, a( 1, 1 ), a( 1, 2 ), a( 1, 3 ),
783 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), work, rwork,
784 $ iwork, nout )
785 ELSE
786 WRITE( nout, fmt = 9989 )path
787 END IF
788*
789 IF( tstdrv ) THEN
790 CALL sdrvsp( dotype, nn, nval, nrhs, thresh, tsterr, lda,
791 $ a( 1, 1 ), a( 1, 2 ), a( 1, 3 ), b( 1, 1 ),
792 $ b( 1, 2 ), b( 1, 3 ), work, rwork, iwork,
793 $ nout )
794 ELSE
795 WRITE( nout, fmt = 9988 )path
796 END IF
797*
798 ELSE IF( lsamen( 2, c2, 'TR' ) ) THEN
799*
800* TR: triangular matrices
801*
802 ntypes = 18
803 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
804*
805 IF( tstchk ) THEN
806 CALL schktr( dotype, nn, nval, nnb2, nbval2, nns, nsval,
807 $ thresh, tsterr, lda, a( 1, 1 ), a( 1, 2 ),
808 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), work, rwork,
809 $ iwork, nout )
810 ELSE
811 WRITE( nout, fmt = 9989 )path
812 END IF
813*
814 ELSE IF( lsamen( 2, c2, 'TP' ) ) THEN
815*
816* TP: triangular packed matrices
817*
818 ntypes = 18
819 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
820*
821 IF( tstchk ) THEN
822 CALL schktp( dotype, nn, nval, nns, nsval, thresh, tsterr,
823 $ lda, a( 1, 1 ), a( 1, 2 ), b( 1, 1 ),
824 $ b( 1, 2 ), b( 1, 3 ), work, rwork, iwork,
825 $ nout )
826 ELSE
827 WRITE( nout, fmt = 9989 )path
828 END IF
829*
830 ELSE IF( lsamen( 2, c2, 'TB' ) ) THEN
831*
832* TB: triangular banded matrices
833*
834 ntypes = 17
835 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
836*
837 IF( tstchk ) THEN
838 CALL schktb( dotype, nn, nval, nns, nsval, thresh, tsterr,
839 $ lda, a( 1, 1 ), a( 1, 2 ), b( 1, 1 ),
840 $ b( 1, 2 ), b( 1, 3 ), work, rwork, iwork,
841 $ nout )
842 ELSE
843 WRITE( nout, fmt = 9989 )path
844 END IF
845*
846 ELSE IF( lsamen( 2, c2, 'QR' ) ) THEN
847*
848* QR: QR factorization
849*
850 ntypes = 8
851 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
852*
853 IF( tstchk ) THEN
854 CALL schkqr( dotype, nm, mval, nn, nval, nnb, nbval, nxval,
855 $ nrhs, thresh, tsterr, nmax, a( 1, 1 ),
856 $ a( 1, 2 ), a( 1, 3 ), a( 1, 4 ), a( 1, 5 ),
857 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), b( 1, 4 ),
858 $ work, rwork, iwork, nout )
859 ELSE
860 WRITE( nout, fmt = 9989 )path
861 END IF
862*
863 ELSE IF( lsamen( 2, c2, 'LQ' ) ) THEN
864*
865* LQ: LQ factorization
866*
867 ntypes = 8
868 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
869*
870 IF( tstchk ) THEN
871 CALL schklq( dotype, nm, mval, nn, nval, nnb, nbval, nxval,
872 $ nrhs, thresh, tsterr, nmax, a( 1, 1 ),
873 $ a( 1, 2 ), a( 1, 3 ), a( 1, 4 ), a( 1, 5 ),
874 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), b( 1, 4 ),
875 $ work, rwork, nout )
876 ELSE
877 WRITE( nout, fmt = 9989 )path
878 END IF
879*
880 ELSE IF( lsamen( 2, c2, 'QL' ) ) THEN
881*
882* QL: QL factorization
883*
884 ntypes = 8
885 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
886*
887 IF( tstchk ) THEN
888 CALL schkql( dotype, nm, mval, nn, nval, nnb, nbval, nxval,
889 $ nrhs, thresh, tsterr, nmax, a( 1, 1 ),
890 $ a( 1, 2 ), a( 1, 3 ), a( 1, 4 ), a( 1, 5 ),
891 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), b( 1, 4 ),
892 $ work, rwork, nout )
893 ELSE
894 WRITE( nout, fmt = 9989 )path
895 END IF
896*
897 ELSE IF( lsamen( 2, c2, 'RQ' ) ) THEN
898*
899* RQ: RQ factorization
900*
901 ntypes = 8
902 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
903*
904 IF( tstchk ) THEN
905 CALL schkrq( dotype, nm, mval, nn, nval, nnb, nbval, nxval,
906 $ nrhs, thresh, tsterr, nmax, a( 1, 1 ),
907 $ a( 1, 2 ), a( 1, 3 ), a( 1, 4 ), a( 1, 5 ),
908 $ b( 1, 1 ), b( 1, 2 ), b( 1, 3 ), b( 1, 4 ),
909 $ work, rwork, iwork, nout )
910 ELSE
911 WRITE( nout, fmt = 9989 )path
912 END IF
913*
914 ELSE IF( lsamen( 2, c2, 'QP' ) ) THEN
915*
916* QP: QR factorization with pivoting
917*
918 ntypes = 6
919 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
920*
921 IF( tstchk ) THEN
922 CALL schkq3( dotype, nm, mval, nn, nval, nnb, nbval, nxval,
923 $ thresh, a( 1, 1 ), a( 1, 2 ), b( 1, 1 ),
924 $ b( 1, 3 ), work, iwork, nout )
925 ELSE
926 WRITE( nout, fmt = 9989 )path
927 END IF
928*
929 ELSE IF( lsamen( 2, c2, 'QK' ) ) THEN
930*
931* QK: truncated QR factorization with pivoting
932*
933 ntypes = 19
934 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
935*
936 IF( tstchk ) THEN
937 CALL schkqp3rk( dotype, nm, mval, nn, nval, nns, nsval,
938 $ nnb, nbval, nxval, thresh, a( 1, 1 ),
939 $ a( 1, 2 ), b( 1, 1 ), b( 1, 2 ),
940 $ b( 1, 3 ), b( 1, 4 ),
941 $ work, iwork, nout )
942 ELSE
943 WRITE( nout, fmt = 9989 )path
944 END IF
945*
946 ELSE IF( lsamen( 2, c2, 'TZ' ) ) THEN
947*
948* TZ: Trapezoidal matrix
949*
950 ntypes = 3
951 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
952*
953 IF( tstchk ) THEN
954 CALL schktz( dotype, nm, mval, nn, nval, thresh, tsterr,
955 $ a( 1, 1 ), a( 1, 2 ), b( 1, 1 ),
956 $ b( 1, 3 ), work, nout )
957 ELSE
958 WRITE( nout, fmt = 9989 )path
959 END IF
960*
961 ELSE IF( lsamen( 2, c2, 'LS' ) ) THEN
962*
963* LS: Least squares drivers
964*
965 ntypes = 6
966 CALL alareq( path, nmats, dotype, ntypes, nin, nout )
967*
968 IF( tstdrv ) THEN
969 CALL sdrvls( dotype, nm, mval, nn, nval, nns, nsval, nnb,
970 $ nbval, nxval, thresh, tsterr, a( 1, 1 ),
971 $ a( 1, 2 ), b( 1, 1 ), b( 1, 2 ), b( 1, 3 ),
972 $ rwork, rwork( nmax+1 ), nout )
973 ELSE
974 WRITE( nout, fmt = 9988 )path
975 END IF
976*
977 ELSE IF( lsamen( 2, c2, 'EQ' ) ) THEN
978*
979* EQ: Equilibration routines for general and positive definite
980* matrices (THREQ should be between 2 and 10)
981*
982 IF( tstchk ) THEN
983 CALL schkeq( threq, nout )
984 ELSE
985 WRITE( nout, fmt = 9989 )path
986 END IF
987*
988 ELSE IF( lsamen( 2, c2, 'QT' ) ) THEN
989*
990* QT: QRT routines for general matrices
991*
992 IF( tstchk ) THEN
993 CALL schkqrt( thresh, tsterr, nm, mval, nn, nval, nnb,
994 $ nbval, nout )
995 ELSE
996 WRITE( nout, fmt = 9989 )path
997 END IF
998*
999 ELSE IF( lsamen( 2, c2, 'QX' ) ) THEN
1000*
1001* QX: QRT routines for triangular-pentagonal matrices
1002*
1003 IF( tstchk ) THEN
1004 CALL schkqrtp( thresh, tsterr, nm, mval, nn, nval, nnb,
1005 $ nbval, nout )
1006 ELSE
1007 WRITE( nout, fmt = 9989 )path
1008 END IF
1009*
1010 ELSE IF( lsamen( 2, c2, 'TQ' ) ) THEN
1011*
1012* TQ: LQT routines for general matrices
1013*
1014 IF( tstchk ) THEN
1015 CALL schklqt( thresh, tsterr, nm, mval, nn, nval, nnb,
1016 $ nbval, nout )
1017 ELSE
1018 WRITE( nout, fmt = 9989 )path
1019 END IF
1020*
1021 ELSE IF( lsamen( 2, c2, 'XQ' ) ) THEN
1022*
1023* XQ: LQT routines for triangular-pentagonal matrices
1024*
1025 IF( tstchk ) THEN
1026 CALL schklqtp( thresh, tsterr, nm, mval, nn, nval, nnb,
1027 $ nbval, nout )
1028 ELSE
1029 WRITE( nout, fmt = 9989 )path
1030 END IF
1031*
1032 ELSE IF( lsamen( 2, c2, 'TS' ) ) THEN
1033*
1034* TS: QR routines for tall-skinny matrices
1035*
1036 IF( tstchk ) THEN
1037 CALL schktsqr( thresh, tsterr, nm, mval, nn, nval, nnb,
1038 $ nbval, nout )
1039 ELSE
1040 WRITE( nout, fmt = 9989 )path
1041 END IF
1042*
1043 ELSE IF( lsamen( 2, c2, 'HH' ) ) THEN
1044*
1045* HH: Householder reconstruction for tall-skinny matrices
1046*
1047 IF( tstchk ) THEN
1048 CALL schkorhr_col( thresh, tsterr, nm, mval, nn, nval, nnb,
1049 $ nbval, nout )
1050 ELSE
1051 WRITE( nout, fmt = 9989 ) path
1052 END IF
1053*
1054 ELSE
1055*
1056 WRITE( nout, fmt = 9990 )path
1057 END IF
1058*
1059* Go back to get another input line.
1060*
1061 GO TO 80
1062*
1063* Branch to this line when the last record is read.
1064*
1065 140 CONTINUE
1066 CLOSE ( nin )
1067 s2 = second( )
1068 WRITE( nout, fmt = 9998 )
1069 WRITE( nout, fmt = 9997 )s2 - s1
1070*
1071 DEALLOCATE (a, stat = allocatestatus)
1072 DEALLOCATE (b, stat = allocatestatus)
1073 DEALLOCATE (e, stat = allocatestatus)
1074 DEALLOCATE (s, stat = allocatestatus)
1075 DEALLOCATE (work, stat = allocatestatus)
1076 DEALLOCATE (rwork, stat = allocatestatus)
1077*
1078 9999 FORMAT( / ' Execution not attempted due to input errors' )
1079 9998 FORMAT( / ' End of tests' )
1080 9997 FORMAT( ' Total time used = ', f12.2, ' seconds', / )
1081 9996 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be >=',
1082 $ i6 )
1083 9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
1084 $ i6 )
1085 9994 FORMAT( ' Tests of the REAL LAPACK routines ',
1086 $ / ' LAPACK VERSION ', i1, '.', i1, '.', i1,
1087 $ / / ' The following parameter values will be used:' )
1088 9993 FORMAT( 4x, a4, ': ', 10i6, / 11x, 10i6 )
1089 9992 FORMAT( / ' Routines pass computational tests if test ratio is ',
1090 $ 'less than', f8.2, / )
1091 9991 FORMAT( ' Relative machine ', a, ' is taken to be', e16.6 )
1092 9990 FORMAT( / 1x, a3, ': Unrecognized path name' )
1093 9989 FORMAT( / 1x, a3, ' routines were not tested' )
1094 9988 FORMAT( / 1x, a3, ' driver routines were not tested' )
1095*
1096* End of SCHKAA
1097*
1098 END
subroutine alareq(path, nmats, dotype, ntypes, nin, nout)
ALAREQ
Definition alareq.f:90
subroutine ilaver(vers_major, vers_minor, vers_patch)
ILAVER returns the LAPACK version.
Definition ilaver.f:51
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:72
real function second()
SECOND Using ETIME
program schkaa
SCHKAA
Definition schkaa.F:111
subroutine schkeq(thresh, nout)
SCHKEQ
Definition schkeq.f:54
subroutine schkgb(dotype, nm, mval, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, a, la, afac, lafac, b, x, xact, work, rwork, iwork, nout)
SCHKGB
Definition schkgb.f:191
subroutine schkge(dotype, nm, mval, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKGE
Definition schkge.f:185
subroutine schkgt(dotype, nn, nval, nns, nsval, thresh, tsterr, a, af, b, x, xact, work, rwork, iwork, nout)
SCHKGT
Definition schkgt.f:146
subroutine schklq(dotype, nm, mval, nn, nval, nnb, nbval, nxval, nrhs, thresh, tsterr, nmax, a, af, aq, al, ac, b, x, xact, tau, work, rwork, nout)
SCHKLQ
Definition schklq.f:196
subroutine schklqt(thresh, tsterr, nm, mval, nn, nval, nnb, nbval, nout)
SCHKLQT
Definition schklqt.f:102
subroutine schklqtp(thresh, tsterr, nm, mval, nn, nval, nnb, nbval, nout)
SCHKLQTP
Definition schklqtp.f:102
subroutine schkorhr_col(thresh, tsterr, nm, mval, nn, nval, nnb, nbval, nout)
SCHKORHR_COL
subroutine schkpb(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKPB
Definition schkpb.f:172
subroutine schkpo(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKPO
Definition schkpo.f:172
subroutine schkpp(dotype, nn, nval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKPP
Definition schkpp.f:163
subroutine schkps(dotype, nn, nval, nnb, nbval, nrank, rankval, thresh, tsterr, nmax, a, afac, perm, piv, work, rwork, nout)
SCHKPS
Definition schkps.f:154
subroutine schkpt(dotype, nn, nval, nns, nsval, thresh, tsterr, a, d, e, b, x, xact, work, rwork, nout)
SCHKPT
Definition schkpt.f:146
subroutine schkq3(dotype, nm, mval, nn, nval, nnb, nbval, nxval, thresh, a, copya, s, tau, work, iwork, nout)
SCHKQ3
Definition schkq3.f:153
subroutine schkql(dotype, nm, mval, nn, nval, nnb, nbval, nxval, nrhs, thresh, tsterr, nmax, a, af, aq, al, ac, b, x, xact, tau, work, rwork, nout)
SCHKQL
Definition schkql.f:196
subroutine schkqp3rk(dotype, nm, mval, nn, nval, nns, nsval, nnb, nbval, nxval, thresh, a, copya, b, copyb, s, tau, work, iwork, nout)
SCHKQP3RK
Definition schkqp3rk.f:184
subroutine schkqr(dotype, nm, mval, nn, nval, nnb, nbval, nxval, nrhs, thresh, tsterr, nmax, a, af, aq, ar, ac, b, x, xact, tau, work, rwork, iwork, nout)
SCHKQR
Definition schkqr.f:201
subroutine schkqrt(thresh, tsterr, nm, mval, nn, nval, nnb, nbval, nout)
SCHKQRT
Definition schkqrt.f:100
subroutine schkqrtp(thresh, tsterr, nm, mval, nn, nval, nnb, nbval, nout)
SCHKQRTP
Definition schkqrtp.f:102
subroutine schkrq(dotype, nm, mval, nn, nval, nnb, nbval, nxval, nrhs, thresh, tsterr, nmax, a, af, aq, ar, ac, b, x, xact, tau, work, rwork, iwork, nout)
SCHKRQ
Definition schkrq.f:201
subroutine schksp(dotype, nn, nval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKSP
Definition schksp.f:163
subroutine schksy(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKSY
Definition schksy.f:170
subroutine schksy_aa(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKSY_AA
Definition schksy_aa.f:170
subroutine schksy_aa_2stage(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKSY_AA_2STAGE
subroutine schksy_rk(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, e, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKSY_RK
Definition schksy_rk.f:176
subroutine schksy_rook(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKSY_ROOK
subroutine schktb(dotype, nn, nval, nns, nsval, thresh, tsterr, nmax, ab, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKTB
Definition schktb.f:155
subroutine schktp(dotype, nn, nval, nns, nsval, thresh, tsterr, nmax, ap, ainvp, b, x, xact, work, rwork, iwork, nout)
SCHKTP
Definition schktp.f:157
subroutine schktr(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKTR
Definition schktr.f:167
subroutine schktsqr(thresh, tsterr, nm, mval, nn, nval, nnb, nbval, nout)
SCHKQRT
Definition schktsqr.f:102
subroutine schktz(dotype, nm, mval, nn, nval, thresh, tsterr, a, copya, s, tau, work, nout)
SCHKTZ
Definition schktz.f:132
subroutine sdrvgb(dotype, nn, nval, nrhs, thresh, tsterr, a, la, afb, lafb, asav, b, bsav, x, xact, s, work, rwork, iwork, nout)
SDRVGB
Definition sdrvgb.f:172
subroutine sdrvge(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, asav, b, bsav, x, xact, s, work, rwork, iwork, nout)
SDRVGE
Definition sdrvge.f:164
subroutine sdrvgt(dotype, nn, nval, nrhs, thresh, tsterr, a, af, b, x, xact, work, rwork, iwork, nout)
SDRVGT
Definition sdrvgt.f:139
subroutine sdrvls(dotype, nm, mval, nn, nval, nns, nsval, nnb, nbval, nxval, thresh, tsterr, a, copya, b, copyb, c, s, copys, nout)
SDRVLS
Definition sdrvls.f:192
subroutine sdrvpb(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, asav, b, bsav, x, xact, s, work, rwork, iwork, nout)
SDRVPB
Definition sdrvpb.f:164
subroutine sdrvpo(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, asav, b, bsav, x, xact, s, work, rwork, iwork, nout)
SDRVPO
Definition sdrvpo.f:164
subroutine sdrvpp(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, asav, b, bsav, x, xact, s, work, rwork, iwork, nout)
SDRVPP
Definition sdrvpp.f:167
subroutine sdrvpt(dotype, nn, nval, nrhs, thresh, tsterr, a, d, e, b, x, xact, work, rwork, nout)
SDRVPT
Definition sdrvpt.f:140
subroutine sdrvsp(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SDRVSP
Definition sdrvsp.f:156
subroutine sdrvsy(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SDRVSY
Definition sdrvsy.f:152
subroutine sdrvsy_aa(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SDRVSY_AA
Definition sdrvsy_aa.f:152
subroutine sdrvsy_aa_2stage(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SDRVSY_AA_2STAGE
subroutine sdrvsy_rk(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, e, ainv, b, x, xact, work, rwork, iwork, nout)
SDRVSY_RK
Definition sdrvsy_rk.f:156
subroutine sdrvsy_rook(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SDRVSY_ROOK