LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
schksp.f
Go to the documentation of this file.
1*> \brief \b SCHKSP
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE SCHKSP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
12* NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK,
13* IWORK, NOUT )
14*
15* .. Scalar Arguments ..
16* LOGICAL TSTERR
17* INTEGER NMAX, NN, NNS, NOUT
18* REAL THRESH
19* ..
20* .. Array Arguments ..
21* LOGICAL DOTYPE( * )
22* INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
23* REAL A( * ), AFAC( * ), AINV( * ), B( * ),
24* $ RWORK( * ), WORK( * ), X( * ), XACT( * )
25* ..
26*
27*
28*> \par Purpose:
29* =============
30*>
31*> \verbatim
32*>
33*> SCHKSP tests SSPTRF, -TRI, -TRS, -RFS, and -CON
34*> \endverbatim
35*
36* Arguments:
37* ==========
38*
39*> \param[in] DOTYPE
40*> \verbatim
41*> DOTYPE is LOGICAL array, dimension (NTYPES)
42*> The matrix types to be used for testing. Matrices of type j
43*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
44*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
45*> \endverbatim
46*>
47*> \param[in] NN
48*> \verbatim
49*> NN is INTEGER
50*> The number of values of N contained in the vector NVAL.
51*> \endverbatim
52*>
53*> \param[in] NVAL
54*> \verbatim
55*> NVAL is INTEGER array, dimension (NN)
56*> The values of the matrix dimension N.
57*> \endverbatim
58*>
59*> \param[in] NNS
60*> \verbatim
61*> NNS is INTEGER
62*> The number of values of NRHS contained in the vector NSVAL.
63*> \endverbatim
64*>
65*> \param[in] NSVAL
66*> \verbatim
67*> NSVAL is INTEGER array, dimension (NNS)
68*> The values of the number of right hand sides NRHS.
69*> \endverbatim
70*>
71*> \param[in] THRESH
72*> \verbatim
73*> THRESH is REAL
74*> The threshold value for the test ratios. A result is
75*> included in the output file if RESULT >= THRESH. To have
76*> every test ratio printed, use THRESH = 0.
77*> \endverbatim
78*>
79*> \param[in] TSTERR
80*> \verbatim
81*> TSTERR is LOGICAL
82*> Flag that indicates whether error exits are to be tested.
83*> \endverbatim
84*>
85*> \param[in] NMAX
86*> \verbatim
87*> NMAX is INTEGER
88*> The maximum value permitted for N, used in dimensioning the
89*> work arrays.
90*> \endverbatim
91*>
92*> \param[out] A
93*> \verbatim
94*> A is REAL array, dimension
95*> (NMAX*(NMAX+1)/2)
96*> \endverbatim
97*>
98*> \param[out] AFAC
99*> \verbatim
100*> AFAC is REAL array, dimension
101*> (NMAX*(NMAX+1)/2)
102*> \endverbatim
103*>
104*> \param[out] AINV
105*> \verbatim
106*> AINV is REAL array, dimension
107*> (NMAX*(NMAX+1)/2)
108*> \endverbatim
109*>
110*> \param[out] B
111*> \verbatim
112*> B is REAL array, dimension (NMAX*NSMAX)
113*> where NSMAX is the largest entry in NSVAL.
114*> \endverbatim
115*>
116*> \param[out] X
117*> \verbatim
118*> X is REAL array, dimension (NMAX*NSMAX)
119*> \endverbatim
120*>
121*> \param[out] XACT
122*> \verbatim
123*> XACT is REAL array, dimension (NMAX*NSMAX)
124*> \endverbatim
125*>
126*> \param[out] WORK
127*> \verbatim
128*> WORK is REAL array, dimension
129*> (NMAX*max(2,NSMAX))
130*> \endverbatim
131*>
132*> \param[out] RWORK
133*> \verbatim
134*> RWORK is REAL array,
135*> dimension (NMAX+2*NSMAX)
136*> \endverbatim
137*>
138*> \param[out] IWORK
139*> \verbatim
140*> IWORK is INTEGER array, dimension (2*NMAX)
141*> \endverbatim
142*>
143*> \param[in] NOUT
144*> \verbatim
145*> NOUT is INTEGER
146*> The unit number for output.
147*> \endverbatim
148*
149* Authors:
150* ========
151*
152*> \author Univ. of Tennessee
153*> \author Univ. of California Berkeley
154*> \author Univ. of Colorado Denver
155*> \author NAG Ltd.
156*
157*> \ingroup single_lin
158*
159* =====================================================================
160 SUBROUTINE schksp( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
161 $ NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK,
162 $ IWORK, NOUT )
163*
164* -- LAPACK test routine --
165* -- LAPACK is a software package provided by Univ. of Tennessee, --
166* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
167*
168* .. Scalar Arguments ..
169 LOGICAL TSTERR
170 INTEGER NMAX, NN, NNS, NOUT
171 REAL THRESH
172* ..
173* .. Array Arguments ..
174 LOGICAL DOTYPE( * )
175 INTEGER IWORK( * ), NSVAL( * ), NVAL( * )
176 REAL A( * ), AFAC( * ), AINV( * ), B( * ),
177 $ rwork( * ), work( * ), x( * ), xact( * )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 REAL ZERO
184 PARAMETER ( ZERO = 0.0e+0 )
185 INTEGER NTYPES
186 parameter( ntypes = 10 )
187 INTEGER NTESTS
188 parameter( ntests = 8 )
189* ..
190* .. Local Scalars ..
191 LOGICAL TRFCON, ZEROT
192 CHARACTER DIST, PACKIT, TYPE, UPLO, XTYPE
193 CHARACTER*3 PATH
194 INTEGER I, I1, I2, IMAT, IN, INFO, IOFF, IRHS, IUPLO,
195 $ izero, j, k, kl, ku, lda, mode, n, nerrs,
196 $ nfail, nimat, npp, nrhs, nrun, nt
197 REAL ANORM, CNDNUM, RCOND, RCONDC
198* ..
199* .. Local Arrays ..
200 CHARACTER UPLOS( 2 )
201 INTEGER ISEED( 4 ), ISEEDY( 4 )
202 REAL RESULT( NTESTS )
203* ..
204* .. External Functions ..
205 LOGICAL LSAME
206 REAL SGET06, SLANSP
207 EXTERNAL lsame, sget06, slansp
208* ..
209* .. External Subroutines ..
210 EXTERNAL alaerh, alahd, alasum, scopy, serrsy, sget04,
213 $ ssptrs
214* ..
215* .. Intrinsic Functions ..
216 INTRINSIC max, min
217* ..
218* .. Scalars in Common ..
219 LOGICAL LERR, OK
220 CHARACTER*32 SRNAMT
221 INTEGER INFOT, NUNIT
222* ..
223* .. Common blocks ..
224 COMMON / infoc / infot, nunit, ok, lerr
225 COMMON / srnamc / srnamt
226* ..
227* .. Data statements ..
228 DATA iseedy / 1988, 1989, 1990, 1991 /
229 DATA uplos / 'U', 'L' /
230* ..
231* .. Executable Statements ..
232*
233* Initialize constants and the random number seed.
234*
235 path( 1: 1 ) = 'Single precision'
236 path( 2: 3 ) = 'SP'
237 nrun = 0
238 nfail = 0
239 nerrs = 0
240 DO 10 i = 1, 4
241 iseed( i ) = iseedy( i )
242 10 CONTINUE
243*
244* Test the error exits
245*
246 IF( tsterr )
247 $ CALL serrsy( path, nout )
248 infot = 0
249*
250* Do for each value of N in NVAL
251*
252 DO 170 in = 1, nn
253 n = nval( in )
254 lda = max( n, 1 )
255 xtype = 'N'
256 nimat = ntypes
257 IF( n.LE.0 )
258 $ nimat = 1
259*
260 izero = 0
261 DO 160 imat = 1, nimat
262*
263* Do the tests only if DOTYPE( IMAT ) is true.
264*
265 IF( .NOT.dotype( imat ) )
266 $ GO TO 160
267*
268* Skip types 3, 4, 5, or 6 if the matrix size is too small.
269*
270 zerot = imat.GE.3 .AND. imat.LE.6
271 IF( zerot .AND. n.LT.imat-2 )
272 $ GO TO 160
273*
274* Do first for UPLO = 'U', then for UPLO = 'L'
275*
276 DO 150 iuplo = 1, 2
277 uplo = uplos( iuplo )
278 IF( lsame( uplo, 'U' ) ) THEN
279 packit = 'C'
280 ELSE
281 packit = 'R'
282 END IF
283*
284* Set up parameters with SLATB4 and generate a test matrix
285* with SLATMS.
286*
287 CALL slatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
288 $ cndnum, dist )
289*
290 srnamt = 'SLATMS'
291 CALL slatms( n, n, dist, iseed, TYPE, rwork, mode,
292 $ cndnum, anorm, kl, ku, packit, a, lda, work,
293 $ info )
294*
295* Check error code from SLATMS.
296*
297 IF( info.NE.0 ) THEN
298 CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
299 $ -1, -1, imat, nfail, nerrs, nout )
300 GO TO 150
301 END IF
302*
303* For types 3-6, zero one or more rows and columns of
304* the matrix to test that INFO is returned correctly.
305*
306 IF( zerot ) THEN
307 IF( imat.EQ.3 ) THEN
308 izero = 1
309 ELSE IF( imat.EQ.4 ) THEN
310 izero = n
311 ELSE
312 izero = n / 2 + 1
313 END IF
314*
315 IF( imat.LT.6 ) THEN
316*
317* Set row and column IZERO to zero.
318*
319 IF( iuplo.EQ.1 ) THEN
320 ioff = ( izero-1 )*izero / 2
321 DO 20 i = 1, izero - 1
322 a( ioff+i ) = zero
323 20 CONTINUE
324 ioff = ioff + izero
325 DO 30 i = izero, n
326 a( ioff ) = zero
327 ioff = ioff + i
328 30 CONTINUE
329 ELSE
330 ioff = izero
331 DO 40 i = 1, izero - 1
332 a( ioff ) = zero
333 ioff = ioff + n - i
334 40 CONTINUE
335 ioff = ioff - izero
336 DO 50 i = izero, n
337 a( ioff+i ) = zero
338 50 CONTINUE
339 END IF
340 ELSE
341 ioff = 0
342 IF( iuplo.EQ.1 ) THEN
343*
344* Set the first IZERO rows and columns to zero.
345*
346 DO 70 j = 1, n
347 i2 = min( j, izero )
348 DO 60 i = 1, i2
349 a( ioff+i ) = zero
350 60 CONTINUE
351 ioff = ioff + j
352 70 CONTINUE
353 ELSE
354*
355* Set the last IZERO rows and columns to zero.
356*
357 DO 90 j = 1, n
358 i1 = max( j, izero )
359 DO 80 i = i1, n
360 a( ioff+i ) = zero
361 80 CONTINUE
362 ioff = ioff + n - j
363 90 CONTINUE
364 END IF
365 END IF
366 ELSE
367 izero = 0
368 END IF
369*
370* Compute the L*D*L' or U*D*U' factorization of the matrix.
371*
372 npp = n*( n+1 ) / 2
373 CALL scopy( npp, a, 1, afac, 1 )
374 srnamt = 'SSPTRF'
375 CALL ssptrf( uplo, n, afac, iwork, info )
376*
377* Adjust the expected value of INFO to account for
378* pivoting.
379*
380 k = izero
381 IF( k.GT.0 ) THEN
382 100 CONTINUE
383 IF( iwork( k ).LT.0 ) THEN
384 IF( iwork( k ).NE.-k ) THEN
385 k = -iwork( k )
386 GO TO 100
387 END IF
388 ELSE IF( iwork( k ).NE.k ) THEN
389 k = iwork( k )
390 GO TO 100
391 END IF
392 END IF
393*
394* Check error code from SSPTRF.
395*
396 IF( info.NE.k )
397 $ CALL alaerh( path, 'SSPTRF', info, k, uplo, n, n, -1,
398 $ -1, -1, imat, nfail, nerrs, nout )
399 IF( info.NE.0 ) THEN
400 trfcon = .true.
401 ELSE
402 trfcon = .false.
403 END IF
404*
405*+ TEST 1
406* Reconstruct matrix from factors and compute residual.
407*
408 CALL sspt01( uplo, n, a, afac, iwork, ainv, lda, rwork,
409 $ result( 1 ) )
410 nt = 1
411*
412*+ TEST 2
413* Form the inverse and compute the residual.
414*
415 IF( .NOT.trfcon ) THEN
416 CALL scopy( npp, afac, 1, ainv, 1 )
417 srnamt = 'SSPTRI'
418 CALL ssptri( uplo, n, ainv, iwork, work, info )
419*
420* Check error code from SSPTRI.
421*
422 IF( info.NE.0 )
423 $ CALL alaerh( path, 'SSPTRI', info, 0, uplo, n, n,
424 $ -1, -1, -1, imat, nfail, nerrs, nout )
425*
426 CALL sppt03( uplo, n, a, ainv, work, lda, rwork,
427 $ rcondc, result( 2 ) )
428 nt = 2
429 END IF
430*
431* Print information about the tests that did not pass
432* the threshold.
433*
434 DO 110 k = 1, nt
435 IF( result( k ).GE.thresh ) THEN
436 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
437 $ CALL alahd( nout, path )
438 WRITE( nout, fmt = 9999 )uplo, n, imat, k,
439 $ result( k )
440 nfail = nfail + 1
441 END IF
442 110 CONTINUE
443 nrun = nrun + nt
444*
445* Do only the condition estimate if INFO is not 0.
446*
447 IF( trfcon ) THEN
448 rcondc = zero
449 GO TO 140
450 END IF
451*
452 DO 130 irhs = 1, nns
453 nrhs = nsval( irhs )
454*
455*+ TEST 3
456* Solve and compute residual for A * X = B.
457*
458 srnamt = 'SLARHS'
459 CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
460 $ nrhs, a, lda, xact, lda, b, lda, iseed,
461 $ info )
462 CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
463*
464 srnamt = 'SSPTRS'
465 CALL ssptrs( uplo, n, nrhs, afac, iwork, x, lda,
466 $ info )
467*
468* Check error code from SSPTRS.
469*
470 IF( info.NE.0 )
471 $ CALL alaerh( path, 'SSPTRS', info, 0, uplo, n, n,
472 $ -1, -1, nrhs, imat, nfail, nerrs,
473 $ nout )
474*
475 CALL slacpy( 'Full', n, nrhs, b, lda, work, lda )
476 CALL sppt02( uplo, n, nrhs, a, x, lda, work, lda,
477 $ rwork, result( 3 ) )
478*
479*+ TEST 4
480* Check solution from generated exact solution.
481*
482 CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
483 $ result( 4 ) )
484*
485*+ TESTS 5, 6, and 7
486* Use iterative refinement to improve the solution.
487*
488 srnamt = 'SSPRFS'
489 CALL ssprfs( uplo, n, nrhs, a, afac, iwork, b, lda, x,
490 $ lda, rwork, rwork( nrhs+1 ), work,
491 $ iwork( n+1 ), info )
492*
493* Check error code from SSPRFS.
494*
495 IF( info.NE.0 )
496 $ CALL alaerh( path, 'SSPRFS', info, 0, uplo, n, n,
497 $ -1, -1, nrhs, imat, nfail, nerrs,
498 $ nout )
499*
500 CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
501 $ result( 5 ) )
502 CALL sppt05( uplo, n, nrhs, a, b, lda, x, lda, xact,
503 $ lda, rwork, rwork( nrhs+1 ),
504 $ result( 6 ) )
505*
506* Print information about the tests that did not pass
507* the threshold.
508*
509 DO 120 k = 3, 7
510 IF( result( k ).GE.thresh ) THEN
511 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
512 $ CALL alahd( nout, path )
513 WRITE( nout, fmt = 9998 )uplo, n, nrhs, imat,
514 $ k, result( k )
515 nfail = nfail + 1
516 END IF
517 120 CONTINUE
518 nrun = nrun + 5
519 130 CONTINUE
520*
521*+ TEST 8
522* Get an estimate of RCOND = 1/CNDNUM.
523*
524 140 CONTINUE
525 anorm = slansp( '1', uplo, n, a, rwork )
526 srnamt = 'SSPCON'
527 CALL sspcon( uplo, n, afac, iwork, anorm, rcond, work,
528 $ iwork( n+1 ), info )
529*
530* Check error code from SSPCON.
531*
532 IF( info.NE.0 )
533 $ CALL alaerh( path, 'SSPCON', info, 0, uplo, n, n, -1,
534 $ -1, -1, imat, nfail, nerrs, nout )
535*
536 result( 8 ) = sget06( rcond, rcondc )
537*
538* Print the test ratio if it is .GE. THRESH.
539*
540 IF( result( 8 ).GE.thresh ) THEN
541 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
542 $ CALL alahd( nout, path )
543 WRITE( nout, fmt = 9999 )uplo, n, imat, 8,
544 $ result( 8 )
545 nfail = nfail + 1
546 END IF
547 nrun = nrun + 1
548 150 CONTINUE
549 160 CONTINUE
550 170 CONTINUE
551*
552* Print a summary of the results.
553*
554 CALL alasum( path, nout, nfail, nrun, nerrs )
555*
556 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', type ', i2, ', test ',
557 $ i2, ', ratio =', g12.5 )
558 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
559 $ i2, ', test(', i2, ') =', g12.5 )
560 RETURN
561*
562* End of SCHKSP
563*
564 END
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine slarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
SLARHS
Definition slarhs.f:205
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine sspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)
SSPCON
Definition sspcon.f:124
subroutine ssprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SSPRFS
Definition ssprfs.f:178
subroutine ssptrf(uplo, n, ap, ipiv, info)
SSPTRF
Definition ssptrf.f:155
subroutine ssptri(uplo, n, ap, ipiv, work, info)
SSPTRI
Definition ssptri.f:107
subroutine ssptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
SSPTRS
Definition ssptrs.f:113
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine schksp(dotype, nn, nval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
SCHKSP
Definition schksp.f:163
subroutine serrsy(path, nunit)
SERRSY
Definition serrsy.f:55
subroutine sget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
SGET04
Definition sget04.f:102
subroutine slatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
SLATB4
Definition slatb4.f:120
subroutine slatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
SLATMS
Definition slatms.f:321
subroutine sppt02(uplo, n, nrhs, a, x, ldx, b, ldb, rwork, resid)
SPPT02
Definition sppt02.f:122
subroutine sppt03(uplo, n, a, ainv, work, ldwork, rwork, rcond, resid)
SPPT03
Definition sppt03.f:110
subroutine sppt05(uplo, n, nrhs, ap, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
SPPT05
Definition sppt05.f:156
subroutine sspt01(uplo, n, a, afac, ipiv, c, ldc, rwork, resid)
SSPT01
Definition sspt01.f:110