LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sppt05()

subroutine sppt05 ( character uplo,
integer n,
integer nrhs,
real, dimension( * ) ap,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real, dimension( ldxact, * ) xact,
integer ldxact,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) reslts )

SPPT05

Purpose:
!>
!> SPPT05 tests the error bounds from iterative refinement for the
!> computed solution to a system of equations A*X = B, where A is a
!> symmetric matrix in packed storage format.
!>
!> RESLTS(1) = test of the error bound
!>           = norm(X - XACT) / ( norm(X) * FERR )
!>
!> A large value is returned if this ratio is not less than one.
!>
!> RESLTS(2) = residual from the iterative refinement routine
!>           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
!>             (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrix A is stored.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices X, B, and XACT, and the
!>          order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X, B, and XACT.
!>          NRHS >= 0.
!> 
[in]AP
!>          AP is REAL array, dimension (N*(N+1)/2)
!>          The upper or lower triangle of the symmetric matrix A, packed
!>          columnwise in a linear array.  The j-th column of A is stored
!>          in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!> 
[in]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]X
!>          X is REAL array, dimension (LDX,NRHS)
!>          The computed solution vectors.  Each vector is stored as a
!>          column of the matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]XACT
!>          XACT is REAL array, dimension (LDX,NRHS)
!>          The exact solution vectors.  Each vector is stored as a
!>          column of the matrix XACT.
!> 
[in]LDXACT
!>          LDXACT is INTEGER
!>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
!> 
[in]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bounds for each solution vector
!>          X.  If XTRUE is the true solution, FERR bounds the magnitude
!>          of the largest entry in (X - XTRUE) divided by the magnitude
!>          of the largest entry in X.
!> 
[in]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector (i.e., the smallest relative change in any entry of A
!>          or B that makes X an exact solution).
!> 
[out]RESLTS
!>          RESLTS is REAL array, dimension (2)
!>          The maximum over the NRHS solution vectors of the ratios:
!>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
!>          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 154 of file sppt05.f.

156*
157* -- LAPACK test routine --
158* -- LAPACK is a software package provided by Univ. of Tennessee, --
159* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160*
161* .. Scalar Arguments ..
162 CHARACTER UPLO
163 INTEGER LDB, LDX, LDXACT, N, NRHS
164* ..
165* .. Array Arguments ..
166 REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
167 $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
168* ..
169*
170* =====================================================================
171*
172* .. Parameters ..
173 REAL ZERO, ONE
174 parameter( zero = 0.0e+0, one = 1.0e+0 )
175* ..
176* .. Local Scalars ..
177 LOGICAL UPPER
178 INTEGER I, IMAX, J, JC, K
179 REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
180* ..
181* .. External Functions ..
182 LOGICAL LSAME
183 INTEGER ISAMAX
184 REAL SLAMCH
185 EXTERNAL lsame, isamax, slamch
186* ..
187* .. Intrinsic Functions ..
188 INTRINSIC abs, max, min
189* ..
190* .. Executable Statements ..
191*
192* Quick exit if N = 0 or NRHS = 0.
193*
194 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
195 reslts( 1 ) = zero
196 reslts( 2 ) = zero
197 RETURN
198 END IF
199*
200 eps = slamch( 'Epsilon' )
201 unfl = slamch( 'Safe minimum' )
202 ovfl = one / unfl
203 upper = lsame( uplo, 'U' )
204*
205* Test 1: Compute the maximum of
206* norm(X - XACT) / ( norm(X) * FERR )
207* over all the vectors X and XACT using the infinity-norm.
208*
209 errbnd = zero
210 DO 30 j = 1, nrhs
211 imax = isamax( n, x( 1, j ), 1 )
212 xnorm = max( abs( x( imax, j ) ), unfl )
213 diff = zero
214 DO 10 i = 1, n
215 diff = max( diff, abs( x( i, j )-xact( i, j ) ) )
216 10 CONTINUE
217*
218 IF( xnorm.GT.one ) THEN
219 GO TO 20
220 ELSE IF( diff.LE.ovfl*xnorm ) THEN
221 GO TO 20
222 ELSE
223 errbnd = one / eps
224 GO TO 30
225 END IF
226*
227 20 CONTINUE
228 IF( diff / xnorm.LE.ferr( j ) ) THEN
229 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
230 ELSE
231 errbnd = one / eps
232 END IF
233 30 CONTINUE
234 reslts( 1 ) = errbnd
235*
236* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
237* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
238*
239 DO 90 k = 1, nrhs
240 DO 80 i = 1, n
241 tmp = abs( b( i, k ) )
242 IF( upper ) THEN
243 jc = ( ( i-1 )*i ) / 2
244 DO 40 j = 1, i
245 tmp = tmp + abs( ap( jc+j ) )*abs( x( j, k ) )
246 40 CONTINUE
247 jc = jc + i
248 DO 50 j = i + 1, n
249 tmp = tmp + abs( ap( jc ) )*abs( x( j, k ) )
250 jc = jc + j
251 50 CONTINUE
252 ELSE
253 jc = i
254 DO 60 j = 1, i - 1
255 tmp = tmp + abs( ap( jc ) )*abs( x( j, k ) )
256 jc = jc + n - j
257 60 CONTINUE
258 DO 70 j = i, n
259 tmp = tmp + abs( ap( jc+j-i ) )*abs( x( j, k ) )
260 70 CONTINUE
261 END IF
262 IF( i.EQ.1 ) THEN
263 axbi = tmp
264 ELSE
265 axbi = min( axbi, tmp )
266 END IF
267 80 CONTINUE
268 tmp = berr( k ) / ( ( n+1 )*eps+( n+1 )*unfl /
269 $ max( axbi, ( n+1 )*unfl ) )
270 IF( k.EQ.1 ) THEN
271 reslts( 2 ) = tmp
272 ELSE
273 reslts( 2 ) = max( reslts( 2 ), tmp )
274 END IF
275 90 CONTINUE
276*
277 RETURN
278*
279* End of SPPT05
280*
integer function isamax(n, sx, incx)
ISAMAX
Definition isamax.f:71
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: