LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sppt02()

subroutine sppt02 ( character  uplo,
integer  n,
integer  nrhs,
real, dimension( * )  a,
real, dimension( ldx, * )  x,
integer  ldx,
real, dimension( ldb, * )  b,
integer  ldb,
real, dimension( * )  rwork,
real  resid 
)

SPPT02

Purpose:
 SPPT02 computes the residual in the solution of a symmetric system
 of linear equations  A*x = b  when packed storage is used for the
 coefficient matrix.  The ratio computed is

    RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS),

 where EPS is the machine precision.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B, the matrix of right hand sides.
          NRHS >= 0.
[in]A
          A is REAL array, dimension (N*(N+1)/2)
          The original symmetric matrix A, stored as a packed
          triangular matrix.
[in]X
          X is REAL array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.   LDX >= max(1,N).
[in,out]B
          B is REAL array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]RWORK
          RWORK is REAL array, dimension (N)
[out]RESID
          RESID is REAL
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 120 of file sppt02.f.

122*
123* -- LAPACK test routine --
124* -- LAPACK is a software package provided by Univ. of Tennessee, --
125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
126*
127* .. Scalar Arguments ..
128 CHARACTER UPLO
129 INTEGER LDB, LDX, N, NRHS
130 REAL RESID
131* ..
132* .. Array Arguments ..
133 REAL A( * ), B( LDB, * ), RWORK( * ), X( LDX, * )
134* ..
135*
136* =====================================================================
137*
138* .. Parameters ..
139 REAL ZERO, ONE
140 parameter( zero = 0.0e+0, one = 1.0e+0 )
141* ..
142* .. Local Scalars ..
143 INTEGER J
144 REAL ANORM, BNORM, EPS, XNORM
145* ..
146* .. External Functions ..
147 REAL SASUM, SLAMCH, SLANSP
148 EXTERNAL sasum, slamch, slansp
149* ..
150* .. External Subroutines ..
151 EXTERNAL sspmv
152* ..
153* .. Intrinsic Functions ..
154 INTRINSIC max
155* ..
156* .. Executable Statements ..
157*
158* Quick exit if N = 0 or NRHS = 0.
159*
160 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
161 resid = zero
162 RETURN
163 END IF
164*
165* Exit with RESID = 1/EPS if ANORM = 0.
166*
167 eps = slamch( 'Epsilon' )
168 anorm = slansp( '1', uplo, n, a, rwork )
169 IF( anorm.LE.zero ) THEN
170 resid = one / eps
171 RETURN
172 END IF
173*
174* Compute B - A*X for the matrix of right hand sides B.
175*
176 DO 10 j = 1, nrhs
177 CALL sspmv( uplo, n, -one, a, x( 1, j ), 1, one, b( 1, j ), 1 )
178 10 CONTINUE
179*
180* Compute the maximum over the number of right hand sides of
181* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) .
182*
183 resid = zero
184 DO 20 j = 1, nrhs
185 bnorm = sasum( n, b( 1, j ), 1 )
186 xnorm = sasum( n, x( 1, j ), 1 )
187 IF( xnorm.LE.zero ) THEN
188 resid = one / eps
189 ELSE
190 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
191 END IF
192 20 CONTINUE
193*
194 RETURN
195*
196* End of SPPT02
197*
real function sasum(n, sx, incx)
SASUM
Definition sasum.f:72
subroutine sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
SSPMV
Definition sspmv.f:147
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slansp(norm, uplo, n, ap, work)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slansp.f:114
Here is the call graph for this function:
Here is the caller graph for this function: