LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ sppt02()

subroutine sppt02 ( character uplo,
integer n,
integer nrhs,
real, dimension( * ) a,
real, dimension( ldx, * ) x,
integer ldx,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) rwork,
real resid )

SPPT02

Purpose:
!> !> SPPT02 computes the residual in the solution of a symmetric system !> of linear equations A*x = b when packed storage is used for the !> coefficient matrix. The ratio computed is !> !> RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS), !> !> where EPS is the machine precision. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !>
[in]N
!> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of columns of B, the matrix of right hand sides. !> NRHS >= 0. !>
[in]A
!> A is REAL array, dimension (N*(N+1)/2) !> The original symmetric matrix A, stored as a packed !> triangular matrix. !>
[in]X
!> X is REAL array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations. !>
[in]LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
[in,out]B
!> B is REAL array, dimension (LDB,NRHS) !> On entry, the right hand side vectors for the system of !> linear equations. !> On exit, B is overwritten with the difference B - A*X. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]RWORK
!> RWORK is REAL array, dimension (N) !>
[out]RESID
!> RESID is REAL !> The maximum over the number of right hand sides of !> norm(B - A*X) / ( norm(A) * norm(X) * EPS ). !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 120 of file sppt02.f.

122*
123* -- LAPACK test routine --
124* -- LAPACK is a software package provided by Univ. of Tennessee, --
125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
126*
127* .. Scalar Arguments ..
128 CHARACTER UPLO
129 INTEGER LDB, LDX, N, NRHS
130 REAL RESID
131* ..
132* .. Array Arguments ..
133 REAL A( * ), B( LDB, * ), RWORK( * ), X( LDX, * )
134* ..
135*
136* =====================================================================
137*
138* .. Parameters ..
139 REAL ZERO, ONE
140 parameter( zero = 0.0e+0, one = 1.0e+0 )
141* ..
142* .. Local Scalars ..
143 INTEGER J
144 REAL ANORM, BNORM, EPS, XNORM
145* ..
146* .. External Functions ..
147 REAL SASUM, SLAMCH, SLANSP
148 EXTERNAL sasum, slamch, slansp
149* ..
150* .. External Subroutines ..
151 EXTERNAL sspmv
152* ..
153* .. Intrinsic Functions ..
154 INTRINSIC max
155* ..
156* .. Executable Statements ..
157*
158* Quick exit if N = 0 or NRHS = 0.
159*
160 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
161 resid = zero
162 RETURN
163 END IF
164*
165* Exit with RESID = 1/EPS if ANORM = 0.
166*
167 eps = slamch( 'Epsilon' )
168 anorm = slansp( '1', uplo, n, a, rwork )
169 IF( anorm.LE.zero ) THEN
170 resid = one / eps
171 RETURN
172 END IF
173*
174* Compute B - A*X for the matrix of right hand sides B.
175*
176 DO 10 j = 1, nrhs
177 CALL sspmv( uplo, n, -one, a, x( 1, j ), 1, one, b( 1, j ), 1 )
178 10 CONTINUE
179*
180* Compute the maximum over the number of right hand sides of
181* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) .
182*
183 resid = zero
184 DO 20 j = 1, nrhs
185 bnorm = sasum( n, b( 1, j ), 1 )
186 xnorm = sasum( n, x( 1, j ), 1 )
187 IF( xnorm.LE.zero ) THEN
188 resid = one / eps
189 ELSE
190 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
191 END IF
192 20 CONTINUE
193*
194 RETURN
195*
196* End of SPPT02
197*
real function sasum(n, sx, incx)
SASUM
Definition sasum.f:72
subroutine sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
SSPMV
Definition sspmv.f:147
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slansp(norm, uplo, n, ap, work)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slansp.f:112
Here is the call graph for this function:
Here is the caller graph for this function: