LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
sdrvpp.f
Go to the documentation of this file.
1 *> \brief \b SDRVPP
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE SDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NVAL( * )
23 * REAL A( * ), AFAC( * ), ASAV( * ), B( * ),
24 * $ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
25 * $ X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> SDRVPP tests the driver routines SPPSV and -SVX.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is REAL
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is REAL array, dimension
91 *> (NMAX*(NMAX+1)/2)
92 *> \endverbatim
93 *>
94 *> \param[out] AFAC
95 *> \verbatim
96 *> AFAC is REAL array, dimension
97 *> (NMAX*(NMAX+1)/2)
98 *> \endverbatim
99 *>
100 *> \param[out] ASAV
101 *> \verbatim
102 *> ASAV is REAL array, dimension
103 *> (NMAX*(NMAX+1)/2)
104 *> \endverbatim
105 *>
106 *> \param[out] B
107 *> \verbatim
108 *> B is REAL array, dimension (NMAX*NRHS)
109 *> \endverbatim
110 *>
111 *> \param[out] BSAV
112 *> \verbatim
113 *> BSAV is REAL array, dimension (NMAX*NRHS)
114 *> \endverbatim
115 *>
116 *> \param[out] X
117 *> \verbatim
118 *> X is REAL array, dimension (NMAX*NRHS)
119 *> \endverbatim
120 *>
121 *> \param[out] XACT
122 *> \verbatim
123 *> XACT is REAL array, dimension (NMAX*NRHS)
124 *> \endverbatim
125 *>
126 *> \param[out] S
127 *> \verbatim
128 *> S is REAL array, dimension (NMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] WORK
132 *> \verbatim
133 *> WORK is REAL array, dimension
134 *> (NMAX*max(3,NRHS))
135 *> \endverbatim
136 *>
137 *> \param[out] RWORK
138 *> \verbatim
139 *> RWORK is REAL array, dimension (NMAX+2*NRHS)
140 *> \endverbatim
141 *>
142 *> \param[out] IWORK
143 *> \verbatim
144 *> IWORK is INTEGER array, dimension (NMAX)
145 *> \endverbatim
146 *>
147 *> \param[in] NOUT
148 *> \verbatim
149 *> NOUT is INTEGER
150 *> The unit number for output.
151 *> \endverbatim
152 *
153 * Authors:
154 * ========
155 *
156 *> \author Univ. of Tennessee
157 *> \author Univ. of California Berkeley
158 *> \author Univ. of Colorado Denver
159 *> \author NAG Ltd.
160 *
161 *> \ingroup single_lin
162 *
163 * =====================================================================
164  SUBROUTINE sdrvpp( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
165  $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
166  $ RWORK, IWORK, NOUT )
167 *
168 * -- LAPACK test routine --
169 * -- LAPACK is a software package provided by Univ. of Tennessee, --
170 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171 *
172 * .. Scalar Arguments ..
173  LOGICAL TSTERR
174  INTEGER NMAX, NN, NOUT, NRHS
175  REAL THRESH
176 * ..
177 * .. Array Arguments ..
178  LOGICAL DOTYPE( * )
179  INTEGER IWORK( * ), NVAL( * )
180  REAL A( * ), AFAC( * ), ASAV( * ), B( * ),
181  $ bsav( * ), rwork( * ), s( * ), work( * ),
182  $ x( * ), xact( * )
183 * ..
184 *
185 * =====================================================================
186 *
187 * .. Parameters ..
188  REAL ONE, ZERO
189  PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
190  INTEGER NTYPES
191  parameter( ntypes = 9 )
192  INTEGER NTESTS
193  parameter( ntests = 6 )
194 * ..
195 * .. Local Scalars ..
196  LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
197  CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
198  CHARACTER*3 PATH
199  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
200  $ izero, k, k1, kl, ku, lda, mode, n, nerrs,
201  $ nfact, nfail, nimat, npp, nrun, nt
202  REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
203  $ ROLDC, SCOND
204 * ..
205 * .. Local Arrays ..
206  CHARACTER EQUEDS( 2 ), FACTS( 3 ), PACKS( 2 ), UPLOS( 2 )
207  INTEGER ISEED( 4 ), ISEEDY( 4 )
208  REAL RESULT( NTESTS )
209 * ..
210 * .. External Functions ..
211  LOGICAL LSAME
212  REAL SGET06, SLANSP
213  EXTERNAL lsame, sget06, slansp
214 * ..
215 * .. External Subroutines ..
216  EXTERNAL aladhd, alaerh, alasvm, scopy, serrvx, sget04,
219  $ spptrf, spptri
220 * ..
221 * .. Scalars in Common ..
222  LOGICAL LERR, OK
223  CHARACTER*32 SRNAMT
224  INTEGER INFOT, NUNIT
225 * ..
226 * .. Common blocks ..
227  COMMON / infoc / infot, nunit, ok, lerr
228  COMMON / srnamc / srnamt
229 * ..
230 * .. Intrinsic Functions ..
231  INTRINSIC max
232 * ..
233 * .. Data statements ..
234  DATA iseedy / 1988, 1989, 1990, 1991 /
235  DATA uplos / 'U', 'L' / , facts / 'F', 'N', 'E' / ,
236  $ packs / 'C', 'R' / , equeds / 'N', 'Y' /
237 * ..
238 * .. Executable Statements ..
239 *
240 * Initialize constants and the random number seed.
241 *
242  path( 1: 1 ) = 'Single precision'
243  path( 2: 3 ) = 'PP'
244  nrun = 0
245  nfail = 0
246  nerrs = 0
247  DO 10 i = 1, 4
248  iseed( i ) = iseedy( i )
249  10 CONTINUE
250 *
251 * Test the error exits
252 *
253  IF( tsterr )
254  $ CALL serrvx( path, nout )
255  infot = 0
256 *
257 * Do for each value of N in NVAL
258 *
259  DO 140 in = 1, nn
260  n = nval( in )
261  lda = max( n, 1 )
262  npp = n*( n+1 ) / 2
263  xtype = 'N'
264  nimat = ntypes
265  IF( n.LE.0 )
266  $ nimat = 1
267 *
268  DO 130 imat = 1, nimat
269 *
270 * Do the tests only if DOTYPE( IMAT ) is true.
271 *
272  IF( .NOT.dotype( imat ) )
273  $ GO TO 130
274 *
275 * Skip types 3, 4, or 5 if the matrix size is too small.
276 *
277  zerot = imat.GE.3 .AND. imat.LE.5
278  IF( zerot .AND. n.LT.imat-2 )
279  $ GO TO 130
280 *
281 * Do first for UPLO = 'U', then for UPLO = 'L'
282 *
283  DO 120 iuplo = 1, 2
284  uplo = uplos( iuplo )
285  packit = packs( iuplo )
286 *
287 * Set up parameters with SLATB4 and generate a test matrix
288 * with SLATMS.
289 *
290  CALL slatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
291  $ cndnum, dist )
292  rcondc = one / cndnum
293 *
294  srnamt = 'SLATMS'
295  CALL slatms( n, n, dist, iseed, TYPE, rwork, mode,
296  $ cndnum, anorm, kl, ku, packit, a, lda, work,
297  $ info )
298 *
299 * Check error code from SLATMS.
300 *
301  IF( info.NE.0 ) THEN
302  CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
303  $ -1, -1, imat, nfail, nerrs, nout )
304  GO TO 120
305  END IF
306 *
307 * For types 3-5, zero one row and column of the matrix to
308 * test that INFO is returned correctly.
309 *
310  IF( zerot ) THEN
311  IF( imat.EQ.3 ) THEN
312  izero = 1
313  ELSE IF( imat.EQ.4 ) THEN
314  izero = n
315  ELSE
316  izero = n / 2 + 1
317  END IF
318 *
319 * Set row and column IZERO of A to 0.
320 *
321  IF( iuplo.EQ.1 ) THEN
322  ioff = ( izero-1 )*izero / 2
323  DO 20 i = 1, izero - 1
324  a( ioff+i ) = zero
325  20 CONTINUE
326  ioff = ioff + izero
327  DO 30 i = izero, n
328  a( ioff ) = zero
329  ioff = ioff + i
330  30 CONTINUE
331  ELSE
332  ioff = izero
333  DO 40 i = 1, izero - 1
334  a( ioff ) = zero
335  ioff = ioff + n - i
336  40 CONTINUE
337  ioff = ioff - izero
338  DO 50 i = izero, n
339  a( ioff+i ) = zero
340  50 CONTINUE
341  END IF
342  ELSE
343  izero = 0
344  END IF
345 *
346 * Save a copy of the matrix A in ASAV.
347 *
348  CALL scopy( npp, a, 1, asav, 1 )
349 *
350  DO 110 iequed = 1, 2
351  equed = equeds( iequed )
352  IF( iequed.EQ.1 ) THEN
353  nfact = 3
354  ELSE
355  nfact = 1
356  END IF
357 *
358  DO 100 ifact = 1, nfact
359  fact = facts( ifact )
360  prefac = lsame( fact, 'F' )
361  nofact = lsame( fact, 'N' )
362  equil = lsame( fact, 'E' )
363 *
364  IF( zerot ) THEN
365  IF( prefac )
366  $ GO TO 100
367  rcondc = zero
368 *
369  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
370 *
371 * Compute the condition number for comparison with
372 * the value returned by SPPSVX (FACT = 'N' reuses
373 * the condition number from the previous iteration
374 * with FACT = 'F').
375 *
376  CALL scopy( npp, asav, 1, afac, 1 )
377  IF( equil .OR. iequed.GT.1 ) THEN
378 *
379 * Compute row and column scale factors to
380 * equilibrate the matrix A.
381 *
382  CALL sppequ( uplo, n, afac, s, scond, amax,
383  $ info )
384  IF( info.EQ.0 .AND. n.GT.0 ) THEN
385  IF( iequed.GT.1 )
386  $ scond = zero
387 *
388 * Equilibrate the matrix.
389 *
390  CALL slaqsp( uplo, n, afac, s, scond,
391  $ amax, equed )
392  END IF
393  END IF
394 *
395 * Save the condition number of the
396 * non-equilibrated system for use in SGET04.
397 *
398  IF( equil )
399  $ roldc = rcondc
400 *
401 * Compute the 1-norm of A.
402 *
403  anorm = slansp( '1', uplo, n, afac, rwork )
404 *
405 * Factor the matrix A.
406 *
407  CALL spptrf( uplo, n, afac, info )
408 *
409 * Form the inverse of A.
410 *
411  CALL scopy( npp, afac, 1, a, 1 )
412  CALL spptri( uplo, n, a, info )
413 *
414 * Compute the 1-norm condition number of A.
415 *
416  ainvnm = slansp( '1', uplo, n, a, rwork )
417  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
418  rcondc = one
419  ELSE
420  rcondc = ( one / anorm ) / ainvnm
421  END IF
422  END IF
423 *
424 * Restore the matrix A.
425 *
426  CALL scopy( npp, asav, 1, a, 1 )
427 *
428 * Form an exact solution and set the right hand side.
429 *
430  srnamt = 'SLARHS'
431  CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
432  $ nrhs, a, lda, xact, lda, b, lda,
433  $ iseed, info )
434  xtype = 'C'
435  CALL slacpy( 'Full', n, nrhs, b, lda, bsav, lda )
436 *
437  IF( nofact ) THEN
438 *
439 * --- Test SPPSV ---
440 *
441 * Compute the L*L' or U'*U factorization of the
442 * matrix and solve the system.
443 *
444  CALL scopy( npp, a, 1, afac, 1 )
445  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
446 *
447  srnamt = 'SPPSV '
448  CALL sppsv( uplo, n, nrhs, afac, x, lda, info )
449 *
450 * Check error code from SPPSV .
451 *
452  IF( info.NE.izero ) THEN
453  CALL alaerh( path, 'SPPSV ', info, izero,
454  $ uplo, n, n, -1, -1, nrhs, imat,
455  $ nfail, nerrs, nout )
456  GO TO 70
457  ELSE IF( info.NE.0 ) THEN
458  GO TO 70
459  END IF
460 *
461 * Reconstruct matrix from factors and compute
462 * residual.
463 *
464  CALL sppt01( uplo, n, a, afac, rwork,
465  $ result( 1 ) )
466 *
467 * Compute residual of the computed solution.
468 *
469  CALL slacpy( 'Full', n, nrhs, b, lda, work,
470  $ lda )
471  CALL sppt02( uplo, n, nrhs, a, x, lda, work,
472  $ lda, rwork, result( 2 ) )
473 *
474 * Check solution from generated exact solution.
475 *
476  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
477  $ result( 3 ) )
478  nt = 3
479 *
480 * Print information about the tests that did not
481 * pass the threshold.
482 *
483  DO 60 k = 1, nt
484  IF( result( k ).GE.thresh ) THEN
485  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
486  $ CALL aladhd( nout, path )
487  WRITE( nout, fmt = 9999 )'SPPSV ', uplo,
488  $ n, imat, k, result( k )
489  nfail = nfail + 1
490  END IF
491  60 CONTINUE
492  nrun = nrun + nt
493  70 CONTINUE
494  END IF
495 *
496 * --- Test SPPSVX ---
497 *
498  IF( .NOT.prefac .AND. npp.GT.0 )
499  $ CALL slaset( 'Full', npp, 1, zero, zero, afac,
500  $ npp )
501  CALL slaset( 'Full', n, nrhs, zero, zero, x, lda )
502  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
503 *
504 * Equilibrate the matrix if FACT='F' and
505 * EQUED='Y'.
506 *
507  CALL slaqsp( uplo, n, a, s, scond, amax, equed )
508  END IF
509 *
510 * Solve the system and compute the condition number
511 * and error bounds using SPPSVX.
512 *
513  srnamt = 'SPPSVX'
514  CALL sppsvx( fact, uplo, n, nrhs, a, afac, equed,
515  $ s, b, lda, x, lda, rcond, rwork,
516  $ rwork( nrhs+1 ), work, iwork, info )
517 *
518 * Check the error code from SPPSVX.
519 *
520  IF( info.NE.izero ) THEN
521  CALL alaerh( path, 'SPPSVX', info, izero,
522  $ fact // uplo, n, n, -1, -1, nrhs,
523  $ imat, nfail, nerrs, nout )
524  GO TO 90
525  END IF
526 *
527  IF( info.EQ.0 ) THEN
528  IF( .NOT.prefac ) THEN
529 *
530 * Reconstruct matrix from factors and compute
531 * residual.
532 *
533  CALL sppt01( uplo, n, a, afac,
534  $ rwork( 2*nrhs+1 ), result( 1 ) )
535  k1 = 1
536  ELSE
537  k1 = 2
538  END IF
539 *
540 * Compute residual of the computed solution.
541 *
542  CALL slacpy( 'Full', n, nrhs, bsav, lda, work,
543  $ lda )
544  CALL sppt02( uplo, n, nrhs, asav, x, lda, work,
545  $ lda, rwork( 2*nrhs+1 ),
546  $ result( 2 ) )
547 *
548 * Check solution from generated exact solution.
549 *
550  IF( nofact .OR. ( prefac .AND. lsame( equed,
551  $ 'N' ) ) ) THEN
552  CALL sget04( n, nrhs, x, lda, xact, lda,
553  $ rcondc, result( 3 ) )
554  ELSE
555  CALL sget04( n, nrhs, x, lda, xact, lda,
556  $ roldc, result( 3 ) )
557  END IF
558 *
559 * Check the error bounds from iterative
560 * refinement.
561 *
562  CALL sppt05( uplo, n, nrhs, asav, b, lda, x,
563  $ lda, xact, lda, rwork,
564  $ rwork( nrhs+1 ), result( 4 ) )
565  ELSE
566  k1 = 6
567  END IF
568 *
569 * Compare RCOND from SPPSVX with the computed value
570 * in RCONDC.
571 *
572  result( 6 ) = sget06( rcond, rcondc )
573 *
574 * Print information about the tests that did not pass
575 * the threshold.
576 *
577  DO 80 k = k1, 6
578  IF( result( k ).GE.thresh ) THEN
579  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
580  $ CALL aladhd( nout, path )
581  IF( prefac ) THEN
582  WRITE( nout, fmt = 9997 )'SPPSVX', fact,
583  $ uplo, n, equed, imat, k, result( k )
584  ELSE
585  WRITE( nout, fmt = 9998 )'SPPSVX', fact,
586  $ uplo, n, imat, k, result( k )
587  END IF
588  nfail = nfail + 1
589  END IF
590  80 CONTINUE
591  nrun = nrun + 7 - k1
592  90 CONTINUE
593  100 CONTINUE
594  110 CONTINUE
595  120 CONTINUE
596  130 CONTINUE
597  140 CONTINUE
598 *
599 * Print a summary of the results.
600 *
601  CALL alasvm( path, nout, nfail, nrun, nerrs )
602 *
603  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
604  $ ', test(', i1, ')=', g12.5 )
605  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
606  $ ', type ', i1, ', test(', i1, ')=', g12.5 )
607  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
608  $ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ')=',
609  $ g12.5 )
610  RETURN
611 *
612 * End of SDRVPP
613 *
614  END
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: slaset.f:110
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:321
subroutine slaqsp(UPLO, N, AP, S, SCOND, AMAX, EQUED)
SLAQSP scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by sppeq...
Definition: slaqsp.f:125
subroutine spptrf(UPLO, N, AP, INFO)
SPPTRF
Definition: spptrf.f:119
subroutine sppequ(UPLO, N, AP, S, SCOND, AMAX, INFO)
SPPEQU
Definition: sppequ.f:116
subroutine spptri(UPLO, N, AP, INFO)
SPPTRI
Definition: spptri.f:93
subroutine sppsvx(FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
SPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: sppsvx.f:311
subroutine sppsv(UPLO, N, NRHS, AP, B, LDB, INFO)
SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: sppsv.f:144
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:82
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:205
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:120
subroutine sppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
SPPT05
Definition: sppt05.f:156
subroutine serrvx(PATH, NUNIT)
SERRVX
Definition: serrvx.f:55
subroutine sppt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
SPPT02
Definition: sppt02.f:122
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:102
subroutine sppt01(UPLO, N, A, AFAC, RWORK, RESID)
SPPT01
Definition: sppt01.f:93
subroutine sdrvpp(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
SDRVPP
Definition: sdrvpp.f:167