LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sdrvge()

subroutine sdrvge ( logical, dimension( * )  dotype,
integer  nn,
integer, dimension( * )  nval,
integer  nrhs,
real  thresh,
logical  tsterr,
integer  nmax,
real, dimension( * )  a,
real, dimension( * )  afac,
real, dimension( * )  asav,
real, dimension( * )  b,
real, dimension( * )  bsav,
real, dimension( * )  x,
real, dimension( * )  xact,
real, dimension( * )  s,
real, dimension( * )  work,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  nout 
)

SDRVGE

Purpose:
 SDRVGE tests the driver routines SGESV and -SVX.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is REAL array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is REAL array, dimension (NMAX*NMAX)
[out]ASAV
          ASAV is REAL array, dimension (NMAX*NMAX)
[out]B
          B is REAL array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is REAL array, dimension (NMAX*NRHS)
[out]X
          X is REAL array, dimension (NMAX*NRHS)
[out]XACT
          XACT is REAL array, dimension (NMAX*NRHS)
[out]S
          S is REAL array, dimension (2*NMAX)
[out]WORK
          WORK is REAL array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is REAL array, dimension (2*NRHS+NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 161 of file sdrvge.f.

164*
165* -- LAPACK test routine --
166* -- LAPACK is a software package provided by Univ. of Tennessee, --
167* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
168*
169* .. Scalar Arguments ..
170 LOGICAL TSTERR
171 INTEGER NMAX, NN, NOUT, NRHS
172 REAL THRESH
173* ..
174* .. Array Arguments ..
175 LOGICAL DOTYPE( * )
176 INTEGER IWORK( * ), NVAL( * )
177 REAL A( * ), AFAC( * ), ASAV( * ), B( * ),
178 $ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
179 $ X( * ), XACT( * )
180* ..
181*
182* =====================================================================
183*
184* .. Parameters ..
185 REAL ONE, ZERO
186 parameter( one = 1.0e+0, zero = 0.0e+0 )
187 INTEGER NTYPES
188 parameter( ntypes = 11 )
189 INTEGER NTESTS
190 parameter( ntests = 7 )
191 INTEGER NTRAN
192 parameter( ntran = 3 )
193* ..
194* .. Local Scalars ..
195 LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
196 CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
197 CHARACTER*3 PATH
198 INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, ITRAN,
199 $ IZERO, K, K1, KL, KU, LDA, LWORK, MODE, N, NB,
200 $ NBMIN, NERRS, NFACT, NFAIL, NIMAT, NRUN, NT
201 REAL AINVNM, AMAX, ANORM, ANORMI, ANORMO, CNDNUM,
202 $ COLCND, RCOND, RCONDC, RCONDI, RCONDO, ROLDC,
203 $ ROLDI, ROLDO, ROWCND, RPVGRW
204* ..
205* .. Local Arrays ..
206 CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
207 INTEGER ISEED( 4 ), ISEEDY( 4 )
208 REAL RESULT( NTESTS )
209* ..
210* .. External Functions ..
211 LOGICAL LSAME
212 REAL SGET06, SLAMCH, SLANGE, SLANTR
213 EXTERNAL lsame, sget06, slamch, slange, slantr
214* ..
215* .. External Subroutines ..
216 EXTERNAL aladhd, alaerh, alasvm, serrvx, sgeequ, sgesv,
219 $ slatms, xlaenv
220* ..
221* .. Intrinsic Functions ..
222 INTRINSIC abs, max
223* ..
224* .. Scalars in Common ..
225 LOGICAL LERR, OK
226 CHARACTER*32 SRNAMT
227 INTEGER INFOT, NUNIT
228* ..
229* .. Common blocks ..
230 COMMON / infoc / infot, nunit, ok, lerr
231 COMMON / srnamc / srnamt
232* ..
233* .. Data statements ..
234 DATA iseedy / 1988, 1989, 1990, 1991 /
235 DATA transs / 'N', 'T', 'C' /
236 DATA facts / 'F', 'N', 'E' /
237 DATA equeds / 'N', 'R', 'C', 'B' /
238* ..
239* .. Executable Statements ..
240*
241* Initialize constants and the random number seed.
242*
243 path( 1: 1 ) = 'Single precision'
244 path( 2: 3 ) = 'GE'
245 nrun = 0
246 nfail = 0
247 nerrs = 0
248 DO 10 i = 1, 4
249 iseed( i ) = iseedy( i )
250 10 CONTINUE
251*
252* Test the error exits
253*
254 IF( tsterr )
255 $ CALL serrvx( path, nout )
256 infot = 0
257*
258* Set the block size and minimum block size for testing.
259*
260 nb = 1
261 nbmin = 2
262 CALL xlaenv( 1, nb )
263 CALL xlaenv( 2, nbmin )
264*
265* Do for each value of N in NVAL
266*
267 DO 90 in = 1, nn
268 n = nval( in )
269 lda = max( n, 1 )
270 xtype = 'N'
271 nimat = ntypes
272 IF( n.LE.0 )
273 $ nimat = 1
274*
275 DO 80 imat = 1, nimat
276*
277* Do the tests only if DOTYPE( IMAT ) is true.
278*
279 IF( .NOT.dotype( imat ) )
280 $ GO TO 80
281*
282* Skip types 5, 6, or 7 if the matrix size is too small.
283*
284 zerot = imat.GE.5 .AND. imat.LE.7
285 IF( zerot .AND. n.LT.imat-4 )
286 $ GO TO 80
287*
288* Set up parameters with SLATB4 and generate a test matrix
289* with SLATMS.
290*
291 CALL slatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
292 $ CNDNUM, DIST )
293 rcondc = one / cndnum
294*
295 srnamt = 'SLATMS'
296 CALL slatms( n, n, dist, iseed, TYPE, RWORK, MODE, CNDNUM,
297 $ ANORM, KL, KU, 'No packing', A, LDA, WORK,
298 $ INFO )
299*
300* Check error code from SLATMS.
301*
302 IF( info.NE.0 ) THEN
303 CALL alaerh( path, 'SLATMS', info, 0, ' ', n, n, -1, -1,
304 $ -1, imat, nfail, nerrs, nout )
305 GO TO 80
306 END IF
307*
308* For types 5-7, zero one or more columns of the matrix to
309* test that INFO is returned correctly.
310*
311 IF( zerot ) THEN
312 IF( imat.EQ.5 ) THEN
313 izero = 1
314 ELSE IF( imat.EQ.6 ) THEN
315 izero = n
316 ELSE
317 izero = n / 2 + 1
318 END IF
319 ioff = ( izero-1 )*lda
320 IF( imat.LT.7 ) THEN
321 DO 20 i = 1, n
322 a( ioff+i ) = zero
323 20 CONTINUE
324 ELSE
325 CALL slaset( 'Full', n, n-izero+1, zero, zero,
326 $ a( ioff+1 ), lda )
327 END IF
328 ELSE
329 izero = 0
330 END IF
331*
332* Save a copy of the matrix A in ASAV.
333*
334 CALL slacpy( 'Full', n, n, a, lda, asav, lda )
335*
336 DO 70 iequed = 1, 4
337 equed = equeds( iequed )
338 IF( iequed.EQ.1 ) THEN
339 nfact = 3
340 ELSE
341 nfact = 1
342 END IF
343*
344 DO 60 ifact = 1, nfact
345 fact = facts( ifact )
346 prefac = lsame( fact, 'F' )
347 nofact = lsame( fact, 'N' )
348 equil = lsame( fact, 'E' )
349*
350 IF( zerot ) THEN
351 IF( prefac )
352 $ GO TO 60
353 rcondo = zero
354 rcondi = zero
355*
356 ELSE IF( .NOT.nofact ) THEN
357*
358* Compute the condition number for comparison with
359* the value returned by SGESVX (FACT = 'N' reuses
360* the condition number from the previous iteration
361* with FACT = 'F').
362*
363 CALL slacpy( 'Full', n, n, asav, lda, afac, lda )
364 IF( equil .OR. iequed.GT.1 ) THEN
365*
366* Compute row and column scale factors to
367* equilibrate the matrix A.
368*
369 CALL sgeequ( n, n, afac, lda, s, s( n+1 ),
370 $ rowcnd, colcnd, amax, info )
371 IF( info.EQ.0 .AND. n.GT.0 ) THEN
372 IF( lsame( equed, 'R' ) ) THEN
373 rowcnd = zero
374 colcnd = one
375 ELSE IF( lsame( equed, 'C' ) ) THEN
376 rowcnd = one
377 colcnd = zero
378 ELSE IF( lsame( equed, 'B' ) ) THEN
379 rowcnd = zero
380 colcnd = zero
381 END IF
382*
383* Equilibrate the matrix.
384*
385 CALL slaqge( n, n, afac, lda, s, s( n+1 ),
386 $ rowcnd, colcnd, amax, equed )
387 END IF
388 END IF
389*
390* Save the condition number of the non-equilibrated
391* system for use in SGET04.
392*
393 IF( equil ) THEN
394 roldo = rcondo
395 roldi = rcondi
396 END IF
397*
398* Compute the 1-norm and infinity-norm of A.
399*
400 anormo = slange( '1', n, n, afac, lda, rwork )
401 anormi = slange( 'I', n, n, afac, lda, rwork )
402*
403* Factor the matrix A.
404*
405 srnamt = 'SGETRF'
406 CALL sgetrf( n, n, afac, lda, iwork, info )
407*
408* Form the inverse of A.
409*
410 CALL slacpy( 'Full', n, n, afac, lda, a, lda )
411 lwork = nmax*max( 3, nrhs )
412 srnamt = 'SGETRI'
413 CALL sgetri( n, a, lda, iwork, work, lwork, info )
414*
415* Compute the 1-norm condition number of A.
416*
417 ainvnm = slange( '1', n, n, a, lda, rwork )
418 IF( anormo.LE.zero .OR. ainvnm.LE.zero ) THEN
419 rcondo = one
420 ELSE
421 rcondo = ( one / anormo ) / ainvnm
422 END IF
423*
424* Compute the infinity-norm condition number of A.
425*
426 ainvnm = slange( 'I', n, n, a, lda, rwork )
427 IF( anormi.LE.zero .OR. ainvnm.LE.zero ) THEN
428 rcondi = one
429 ELSE
430 rcondi = ( one / anormi ) / ainvnm
431 END IF
432 END IF
433*
434 DO 50 itran = 1, ntran
435*
436* Do for each value of TRANS.
437*
438 trans = transs( itran )
439 IF( itran.EQ.1 ) THEN
440 rcondc = rcondo
441 ELSE
442 rcondc = rcondi
443 END IF
444*
445* Restore the matrix A.
446*
447 CALL slacpy( 'Full', n, n, asav, lda, a, lda )
448*
449* Form an exact solution and set the right hand side.
450*
451 srnamt = 'SLARHS'
452 CALL slarhs( path, xtype, 'Full', trans, n, n, kl,
453 $ ku, nrhs, a, lda, xact, lda, b, lda,
454 $ iseed, info )
455 xtype = 'C'
456 CALL slacpy( 'Full', n, nrhs, b, lda, bsav, lda )
457*
458 IF( nofact .AND. itran.EQ.1 ) THEN
459*
460* --- Test SGESV ---
461*
462* Compute the LU factorization of the matrix and
463* solve the system.
464*
465 CALL slacpy( 'Full', n, n, a, lda, afac, lda )
466 CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
467*
468 srnamt = 'SGESV '
469 CALL sgesv( n, nrhs, afac, lda, iwork, x, lda,
470 $ info )
471*
472* Check error code from SGESV .
473*
474 IF( info.NE.izero )
475 $ CALL alaerh( path, 'SGESV ', info, izero,
476 $ ' ', n, n, -1, -1, nrhs, imat,
477 $ nfail, nerrs, nout )
478*
479* Reconstruct matrix from factors and compute
480* residual.
481*
482 CALL sget01( n, n, a, lda, afac, lda, iwork,
483 $ rwork, result( 1 ) )
484 nt = 1
485 IF( izero.EQ.0 ) THEN
486*
487* Compute residual of the computed solution.
488*
489 CALL slacpy( 'Full', n, nrhs, b, lda, work,
490 $ lda )
491 CALL sget02( 'No transpose', n, n, nrhs, a,
492 $ lda, x, lda, work, lda, rwork,
493 $ result( 2 ) )
494*
495* Check solution from generated exact solution.
496*
497 CALL sget04( n, nrhs, x, lda, xact, lda,
498 $ rcondc, result( 3 ) )
499 nt = 3
500 END IF
501*
502* Print information about the tests that did not
503* pass the threshold.
504*
505 DO 30 k = 1, nt
506 IF( result( k ).GE.thresh ) THEN
507 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
508 $ CALL aladhd( nout, path )
509 WRITE( nout, fmt = 9999 )'SGESV ', n,
510 $ imat, k, result( k )
511 nfail = nfail + 1
512 END IF
513 30 CONTINUE
514 nrun = nrun + nt
515 END IF
516*
517* --- Test SGESVX ---
518*
519 IF( .NOT.prefac )
520 $ CALL slaset( 'Full', n, n, zero, zero, afac,
521 $ lda )
522 CALL slaset( 'Full', n, nrhs, zero, zero, x, lda )
523 IF( iequed.GT.1 .AND. n.GT.0 ) THEN
524*
525* Equilibrate the matrix if FACT = 'F' and
526* EQUED = 'R', 'C', or 'B'.
527*
528 CALL slaqge( n, n, a, lda, s, s( n+1 ), rowcnd,
529 $ colcnd, amax, equed )
530 END IF
531*
532* Solve the system and compute the condition number
533* and error bounds using SGESVX.
534*
535 srnamt = 'SGESVX'
536 CALL sgesvx( fact, trans, n, nrhs, a, lda, afac,
537 $ lda, iwork, equed, s, s( n+1 ), b,
538 $ lda, x, lda, rcond, rwork,
539 $ rwork( nrhs+1 ), work, iwork( n+1 ),
540 $ info )
541*
542* Check the error code from SGESVX.
543*
544 IF( info.NE.izero )
545 $ CALL alaerh( path, 'SGESVX', info, izero,
546 $ fact // trans, n, n, -1, -1, nrhs,
547 $ imat, nfail, nerrs, nout )
548*
549* Compare WORK(1) from SGESVX with the computed
550* reciprocal pivot growth factor RPVGRW
551*
552 IF( info.NE.0 .AND. info.LE.n) THEN
553 rpvgrw = slantr( 'M', 'U', 'N', info, info,
554 $ afac, lda, work )
555 IF( rpvgrw.EQ.zero ) THEN
556 rpvgrw = one
557 ELSE
558 rpvgrw = slange( 'M', n, info, a, lda,
559 $ work ) / rpvgrw
560 END IF
561 ELSE
562 rpvgrw = slantr( 'M', 'U', 'N', n, n, afac, lda,
563 $ work )
564 IF( rpvgrw.EQ.zero ) THEN
565 rpvgrw = one
566 ELSE
567 rpvgrw = slange( 'M', n, n, a, lda, work ) /
568 $ rpvgrw
569 END IF
570 END IF
571 result( 7 ) = abs( rpvgrw-work( 1 ) ) /
572 $ max( work( 1 ), rpvgrw ) /
573 $ slamch( 'E' )
574*
575 IF( .NOT.prefac ) THEN
576*
577* Reconstruct matrix from factors and compute
578* residual.
579*
580 CALL sget01( n, n, a, lda, afac, lda, iwork,
581 $ rwork( 2*nrhs+1 ), result( 1 ) )
582 k1 = 1
583 ELSE
584 k1 = 2
585 END IF
586*
587 IF( info.EQ.0 ) THEN
588 trfcon = .false.
589*
590* Compute residual of the computed solution.
591*
592 CALL slacpy( 'Full', n, nrhs, bsav, lda, work,
593 $ lda )
594 CALL sget02( trans, n, n, nrhs, asav, lda, x,
595 $ lda, work, lda, rwork( 2*nrhs+1 ),
596 $ result( 2 ) )
597*
598* Check solution from generated exact solution.
599*
600 IF( nofact .OR. ( prefac .AND. lsame( equed,
601 $ 'N' ) ) ) THEN
602 CALL sget04( n, nrhs, x, lda, xact, lda,
603 $ rcondc, result( 3 ) )
604 ELSE
605 IF( itran.EQ.1 ) THEN
606 roldc = roldo
607 ELSE
608 roldc = roldi
609 END IF
610 CALL sget04( n, nrhs, x, lda, xact, lda,
611 $ roldc, result( 3 ) )
612 END IF
613*
614* Check the error bounds from iterative
615* refinement.
616*
617 CALL sget07( trans, n, nrhs, asav, lda, b, lda,
618 $ x, lda, xact, lda, rwork, .true.,
619 $ rwork( nrhs+1 ), result( 4 ) )
620 ELSE
621 trfcon = .true.
622 END IF
623*
624* Compare RCOND from SGESVX with the computed value
625* in RCONDC.
626*
627 result( 6 ) = sget06( rcond, rcondc )
628*
629* Print information about the tests that did not pass
630* the threshold.
631*
632 IF( .NOT.trfcon ) THEN
633 DO 40 k = k1, ntests
634 IF( result( k ).GE.thresh ) THEN
635 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
636 $ CALL aladhd( nout, path )
637 IF( prefac ) THEN
638 WRITE( nout, fmt = 9997 )'SGESVX',
639 $ fact, trans, n, equed, imat, k,
640 $ result( k )
641 ELSE
642 WRITE( nout, fmt = 9998 )'SGESVX',
643 $ fact, trans, n, imat, k, result( k )
644 END IF
645 nfail = nfail + 1
646 END IF
647 40 CONTINUE
648 nrun = nrun + ntests - k1 + 1
649 ELSE
650 IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
651 $ THEN
652 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
653 $ CALL aladhd( nout, path )
654 IF( prefac ) THEN
655 WRITE( nout, fmt = 9997 )'SGESVX', fact,
656 $ trans, n, equed, imat, 1, result( 1 )
657 ELSE
658 WRITE( nout, fmt = 9998 )'SGESVX', fact,
659 $ trans, n, imat, 1, result( 1 )
660 END IF
661 nfail = nfail + 1
662 nrun = nrun + 1
663 END IF
664 IF( result( 6 ).GE.thresh ) THEN
665 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
666 $ CALL aladhd( nout, path )
667 IF( prefac ) THEN
668 WRITE( nout, fmt = 9997 )'SGESVX', fact,
669 $ trans, n, equed, imat, 6, result( 6 )
670 ELSE
671 WRITE( nout, fmt = 9998 )'SGESVX', fact,
672 $ trans, n, imat, 6, result( 6 )
673 END IF
674 nfail = nfail + 1
675 nrun = nrun + 1
676 END IF
677 IF( result( 7 ).GE.thresh ) THEN
678 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
679 $ CALL aladhd( nout, path )
680 IF( prefac ) THEN
681 WRITE( nout, fmt = 9997 )'SGESVX', fact,
682 $ trans, n, equed, imat, 7, result( 7 )
683 ELSE
684 WRITE( nout, fmt = 9998 )'SGESVX', fact,
685 $ trans, n, imat, 7, result( 7 )
686 END IF
687 nfail = nfail + 1
688 nrun = nrun + 1
689 END IF
690*
691 END IF
692*
693 50 CONTINUE
694 60 CONTINUE
695 70 CONTINUE
696 80 CONTINUE
697 90 CONTINUE
698*
699* Print a summary of the results.
700*
701 CALL alasvm( path, nout, nfail, nrun, nerrs )
702*
703 9999 FORMAT( 1x, a, ', N =', i5, ', type ', i2, ', test(', i2, ') =',
704 $ g12.5 )
705 9998 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
706 $ ', type ', i2, ', test(', i1, ')=', g12.5 )
707 9997 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
708 $ ', EQUED=''', a1, ''', type ', i2, ', test(', i1, ')=',
709 $ g12.5 )
710 RETURN
711*
712* End of SDRVGE
713*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine sget02(trans, m, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
SGET02
Definition sget02.f:135
subroutine slarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
SLARHS
Definition slarhs.f:205
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine aladhd(iounit, path)
ALADHD
Definition aladhd.f:90
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine sgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
SGEEQU
Definition sgeequ.f:139
subroutine sgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
Download SGESV + dependencies <a href="http://www.netlib.org/cgi-bin/netlibfiles....
Definition sgesv.f:124
subroutine sgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
SGESVX computes the solution to system of linear equations A * X = B for GE matrices
Definition sgesvx.f:349
subroutine sgetrf(m, n, a, lda, ipiv, info)
SGETRF
Definition sgetrf.f:108
subroutine sgetri(n, a, lda, ipiv, work, lwork, info)
SGETRI
Definition sgetri.f:114
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slange(norm, m, n, a, lda, work)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slange.f:114
real function slantr(norm, uplo, diag, m, n, a, lda, work)
SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slantr.f:141
subroutine slaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
SLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ.
Definition slaqge.f:142
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine serrvx(path, nunit)
SERRVX
Definition serrvx.f:55
subroutine sget01(m, n, a, lda, afac, ldafac, ipiv, rwork, resid)
SGET01
Definition sget01.f:107
subroutine sget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
SGET04
Definition sget04.f:102
real function sget06(rcond, rcondc)
SGET06
Definition sget06.f:55
subroutine sget07(trans, n, nrhs, a, lda, b, ldb, x, ldx, xact, ldxact, ferr, chkferr, berr, reslts)
SGET07
Definition sget07.f:165
subroutine slatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
SLATB4
Definition slatb4.f:120
subroutine slatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
SLATMS
Definition slatms.f:321
Here is the call graph for this function:
Here is the caller graph for this function: