LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ slantr()

real function slantr ( character norm,
character uplo,
character diag,
integer m,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) work )

SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.

Download SLANTR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SLANTR  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> trapezoidal or triangular matrix A.
!> 
Returns
SLANTR
!>
!>    SLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in SLANTR as described
!>          above.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the matrix A is upper or lower trapezoidal.
!>          = 'U':  Upper trapezoidal
!>          = 'L':  Lower trapezoidal
!>          Note that A is triangular instead of trapezoidal if M = N.
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          Specifies whether or not the matrix A has unit diagonal.
!>          = 'N':  Non-unit diagonal
!>          = 'U':  Unit diagonal
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0, and if
!>          UPLO = 'U', M <= N.  When M = 0, SLANTR is set to zero.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0, and if
!>          UPLO = 'L', N <= M.  When N = 0, SLANTR is set to zero.
!> 
[in]A
!>          A is REAL array, dimension (LDA,N)
!>          The trapezoidal matrix A (A is triangular if M = N).
!>          If UPLO = 'U', the leading m by n upper trapezoidal part of
!>          the array A contains the upper trapezoidal matrix, and the
!>          strictly lower triangular part of A is not referenced.
!>          If UPLO = 'L', the leading m by n lower trapezoidal part of
!>          the array A contains the lower trapezoidal matrix, and the
!>          strictly upper triangular part of A is not referenced.  Note
!>          that when DIAG = 'U', the diagonal elements of A are not
!>          referenced and are assumed to be one.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(M,1).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK)),
!>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
!>          referenced.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 137 of file slantr.f.

140*
141* -- LAPACK auxiliary routine --
142* -- LAPACK is a software package provided by Univ. of Tennessee, --
143* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
144*
145* .. Scalar Arguments ..
146 CHARACTER DIAG, NORM, UPLO
147 INTEGER LDA, M, N
148* ..
149* .. Array Arguments ..
150 REAL A( LDA, * ), WORK( * )
151* ..
152*
153* =====================================================================
154*
155* .. Parameters ..
156 REAL ONE, ZERO
157 parameter( one = 1.0e+0, zero = 0.0e+0 )
158* ..
159* .. Local Scalars ..
160 LOGICAL UDIAG
161 INTEGER I, J
162 REAL SCALE, SUM, VALUE
163* ..
164* .. External Subroutines ..
165 EXTERNAL slassq
166* ..
167* .. External Functions ..
168 LOGICAL LSAME, SISNAN
169 EXTERNAL lsame, sisnan
170* ..
171* .. Intrinsic Functions ..
172 INTRINSIC abs, min, sqrt
173* ..
174* .. Executable Statements ..
175*
176 IF( min( m, n ).EQ.0 ) THEN
177 VALUE = zero
178 ELSE IF( lsame( norm, 'M' ) ) THEN
179*
180* Find max(abs(A(i,j))).
181*
182 IF( lsame( diag, 'U' ) ) THEN
183 VALUE = one
184 IF( lsame( uplo, 'U' ) ) THEN
185 DO 20 j = 1, n
186 DO 10 i = 1, min( m, j-1 )
187 sum = abs( a( i, j ) )
188 IF( VALUE .LT. sum .OR.
189 $ sisnan( sum ) ) VALUE = sum
190 10 CONTINUE
191 20 CONTINUE
192 ELSE
193 DO 40 j = 1, n
194 DO 30 i = j + 1, m
195 sum = abs( a( i, j ) )
196 IF( VALUE .LT. sum .OR.
197 $ sisnan( sum ) ) VALUE = sum
198 30 CONTINUE
199 40 CONTINUE
200 END IF
201 ELSE
202 VALUE = zero
203 IF( lsame( uplo, 'U' ) ) THEN
204 DO 60 j = 1, n
205 DO 50 i = 1, min( m, j )
206 sum = abs( a( i, j ) )
207 IF( VALUE .LT. sum .OR.
208 $ sisnan( sum ) ) VALUE = sum
209 50 CONTINUE
210 60 CONTINUE
211 ELSE
212 DO 80 j = 1, n
213 DO 70 i = j, m
214 sum = abs( a( i, j ) )
215 IF( VALUE .LT. sum .OR.
216 $ sisnan( sum ) ) VALUE = sum
217 70 CONTINUE
218 80 CONTINUE
219 END IF
220 END IF
221 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
222*
223* Find norm1(A).
224*
225 VALUE = zero
226 udiag = lsame( diag, 'U' )
227 IF( lsame( uplo, 'U' ) ) THEN
228 DO 110 j = 1, n
229 IF( ( udiag ) .AND. ( j.LE.m ) ) THEN
230 sum = one
231 DO 90 i = 1, j - 1
232 sum = sum + abs( a( i, j ) )
233 90 CONTINUE
234 ELSE
235 sum = zero
236 DO 100 i = 1, min( m, j )
237 sum = sum + abs( a( i, j ) )
238 100 CONTINUE
239 END IF
240 IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
241 110 CONTINUE
242 ELSE
243 DO 140 j = 1, n
244 IF( udiag ) THEN
245 sum = one
246 DO 120 i = j + 1, m
247 sum = sum + abs( a( i, j ) )
248 120 CONTINUE
249 ELSE
250 sum = zero
251 DO 130 i = j, m
252 sum = sum + abs( a( i, j ) )
253 130 CONTINUE
254 END IF
255 IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
256 140 CONTINUE
257 END IF
258 ELSE IF( lsame( norm, 'I' ) ) THEN
259*
260* Find normI(A).
261*
262 IF( lsame( uplo, 'U' ) ) THEN
263 IF( lsame( diag, 'U' ) ) THEN
264 DO 150 i = 1, m
265 work( i ) = one
266 150 CONTINUE
267 DO 170 j = 1, n
268 DO 160 i = 1, min( m, j-1 )
269 work( i ) = work( i ) + abs( a( i, j ) )
270 160 CONTINUE
271 170 CONTINUE
272 ELSE
273 DO 180 i = 1, m
274 work( i ) = zero
275 180 CONTINUE
276 DO 200 j = 1, n
277 DO 190 i = 1, min( m, j )
278 work( i ) = work( i ) + abs( a( i, j ) )
279 190 CONTINUE
280 200 CONTINUE
281 END IF
282 ELSE
283 IF( lsame( diag, 'U' ) ) THEN
284 DO 210 i = 1, min( m, n )
285 work( i ) = one
286 210 CONTINUE
287 DO 220 i = n + 1, m
288 work( i ) = zero
289 220 CONTINUE
290 DO 240 j = 1, n
291 DO 230 i = j + 1, m
292 work( i ) = work( i ) + abs( a( i, j ) )
293 230 CONTINUE
294 240 CONTINUE
295 ELSE
296 DO 250 i = 1, m
297 work( i ) = zero
298 250 CONTINUE
299 DO 270 j = 1, n
300 DO 260 i = j, m
301 work( i ) = work( i ) + abs( a( i, j ) )
302 260 CONTINUE
303 270 CONTINUE
304 END IF
305 END IF
306 VALUE = zero
307 DO 280 i = 1, m
308 sum = work( i )
309 IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
310 280 CONTINUE
311 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
312 $ ( lsame( norm, 'E' ) ) ) THEN
313*
314* Find normF(A).
315*
316 IF( lsame( uplo, 'U' ) ) THEN
317 IF( lsame( diag, 'U' ) ) THEN
318 scale = one
319 sum = real( min( m, n ) )
320 DO 290 j = 2, n
321 CALL slassq( min( m, j-1 ), a( 1, j ), 1, scale,
322 $ sum )
323 290 CONTINUE
324 ELSE
325 scale = zero
326 sum = one
327 DO 300 j = 1, n
328 CALL slassq( min( m, j ), a( 1, j ), 1, scale,
329 $ sum )
330 300 CONTINUE
331 END IF
332 ELSE
333 IF( lsame( diag, 'U' ) ) THEN
334 scale = one
335 sum = real( min( m, n ) )
336 DO 310 j = 1, n
337 CALL slassq( m-j, a( min( m, j+1 ), j ), 1, scale,
338 $ sum )
339 310 CONTINUE
340 ELSE
341 scale = zero
342 sum = one
343 DO 320 j = 1, n
344 CALL slassq( m-j+1, a( j, j ), 1, scale, sum )
345 320 CONTINUE
346 END IF
347 END IF
348 VALUE = scale*sqrt( sum )
349 END IF
350*
351 slantr = VALUE
352 RETURN
353*
354* End of SLANTR
355*
logical function sisnan(sin)
SISNAN tests input for NaN.
Definition sisnan.f:57
real function slantr(norm, uplo, diag, m, n, a, lda, work)
SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slantr.f:140
subroutine slassq(n, x, incx, scale, sumsq)
SLASSQ updates a sum of squares represented in scaled form.
Definition slassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: