LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
schksy.f
Go to the documentation of this file.
1 *> \brief \b SCHKSY
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE SCHKSY( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * REAL A( * ), AFAC( * ), AINV( * ), B( * ),
24 * $ RWORK( * ), WORK( * ), X( * ), XACT( * )
25 * ..
26 *
27 *
28 *> \par Purpose:
29 * =============
30 *>
31 *> \verbatim
32 *>
33 *> SCHKSY tests SSYTRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
34 *> \endverbatim
35 *
36 * Arguments:
37 * ==========
38 *
39 *> \param[in] DOTYPE
40 *> \verbatim
41 *> DOTYPE is LOGICAL array, dimension (NTYPES)
42 *> The matrix types to be used for testing. Matrices of type j
43 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
44 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
45 *> \endverbatim
46 *>
47 *> \param[in] NN
48 *> \verbatim
49 *> NN is INTEGER
50 *> The number of values of N contained in the vector NVAL.
51 *> \endverbatim
52 *>
53 *> \param[in] NVAL
54 *> \verbatim
55 *> NVAL is INTEGER array, dimension (NN)
56 *> The values of the matrix dimension N.
57 *> \endverbatim
58 *>
59 *> \param[in] NNB
60 *> \verbatim
61 *> NNB is INTEGER
62 *> The number of values of NB contained in the vector NBVAL.
63 *> \endverbatim
64 *>
65 *> \param[in] NBVAL
66 *> \verbatim
67 *> NBVAL is INTEGER array, dimension (NNB)
68 *> The values of the blocksize NB.
69 *> \endverbatim
70 *>
71 *> \param[in] NNS
72 *> \verbatim
73 *> NNS is INTEGER
74 *> The number of values of NRHS contained in the vector NSVAL.
75 *> \endverbatim
76 *>
77 *> \param[in] NSVAL
78 *> \verbatim
79 *> NSVAL is INTEGER array, dimension (NNS)
80 *> The values of the number of right hand sides NRHS.
81 *> \endverbatim
82 *>
83 *> \param[in] THRESH
84 *> \verbatim
85 *> THRESH is REAL
86 *> The threshold value for the test ratios. A result is
87 *> included in the output file if RESULT >= THRESH. To have
88 *> every test ratio printed, use THRESH = 0.
89 *> \endverbatim
90 *>
91 *> \param[in] TSTERR
92 *> \verbatim
93 *> TSTERR is LOGICAL
94 *> Flag that indicates whether error exits are to be tested.
95 *> \endverbatim
96 *>
97 *> \param[in] NMAX
98 *> \verbatim
99 *> NMAX is INTEGER
100 *> The maximum value permitted for N, used in dimensioning the
101 *> work arrays.
102 *> \endverbatim
103 *>
104 *> \param[out] A
105 *> \verbatim
106 *> A is REAL array, dimension (NMAX*NMAX)
107 *> \endverbatim
108 *>
109 *> \param[out] AFAC
110 *> \verbatim
111 *> AFAC is REAL array, dimension (NMAX*NMAX)
112 *> \endverbatim
113 *>
114 *> \param[out] AINV
115 *> \verbatim
116 *> AINV is REAL array, dimension (NMAX*NMAX)
117 *> \endverbatim
118 *>
119 *> \param[out] B
120 *> \verbatim
121 *> B is REAL array, dimension (NMAX*NSMAX)
122 *> where NSMAX is the largest entry in NSVAL.
123 *> \endverbatim
124 *>
125 *> \param[out] X
126 *> \verbatim
127 *> X is REAL array, dimension (NMAX*NSMAX)
128 *> \endverbatim
129 *>
130 *> \param[out] XACT
131 *> \verbatim
132 *> XACT is REAL array, dimension (NMAX*NSMAX)
133 *> \endverbatim
134 *>
135 *> \param[out] WORK
136 *> \verbatim
137 *> WORK is REAL array, dimension (NMAX*max(3,NSMAX))
138 *> \endverbatim
139 *>
140 *> \param[out] RWORK
141 *> \verbatim
142 *> RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
143 *> \endverbatim
144 *>
145 *> \param[out] IWORK
146 *> \verbatim
147 *> IWORK is INTEGER array, dimension (2*NMAX)
148 *> \endverbatim
149 *>
150 *> \param[in] NOUT
151 *> \verbatim
152 *> NOUT is INTEGER
153 *> The unit number for output.
154 *> \endverbatim
155 *
156 * Authors:
157 * ========
158 *
159 *> \author Univ. of Tennessee
160 *> \author Univ. of California Berkeley
161 *> \author Univ. of Colorado Denver
162 *> \author NAG Ltd.
163 *
164 *> \ingroup single_lin
165 *
166 * =====================================================================
167  SUBROUTINE schksy( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
168  $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
169  $ XACT, WORK, RWORK, IWORK, NOUT )
170 *
171 * -- LAPACK test routine --
172 * -- LAPACK is a software package provided by Univ. of Tennessee, --
173 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
174 *
175 * .. Scalar Arguments ..
176  LOGICAL TSTERR
177  INTEGER NMAX, NN, NNB, NNS, NOUT
178  REAL THRESH
179 * ..
180 * .. Array Arguments ..
181  LOGICAL DOTYPE( * )
182  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
183  REAL A( * ), AFAC( * ), AINV( * ), B( * ),
184  $ rwork( * ), work( * ), x( * ), xact( * )
185 * ..
186 *
187 * =====================================================================
188 *
189 * .. Parameters ..
190  REAL ZERO
191  PARAMETER ( ZERO = 0.0e+0 )
192  INTEGER NTYPES
193  parameter( ntypes = 10 )
194  INTEGER NTESTS
195  parameter( ntests = 9 )
196 * ..
197 * .. Local Scalars ..
198  LOGICAL TRFCON, ZEROT
199  CHARACTER DIST, TYPE, UPLO, XTYPE
200  CHARACTER*3 PATH
201  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
202  $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
203  $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
204  REAL ANORM, CNDNUM, RCOND, RCONDC
205 * ..
206 * .. Local Arrays ..
207  CHARACTER UPLOS( 2 )
208  INTEGER ISEED( 4 ), ISEEDY( 4 )
209  REAL RESULT( NTESTS )
210 * ..
211 * .. External Functions ..
212  REAL SGET06, SLANSY
213  EXTERNAL SGET06, SLANSY
214 * ..
215 * .. External Subroutines ..
216  EXTERNAL alaerh, alahd, alasum, serrsy, sget04, slacpy,
220 * ..
221 * .. Intrinsic Functions ..
222  INTRINSIC max, min
223 * ..
224 * .. Scalars in Common ..
225  LOGICAL LERR, OK
226  CHARACTER*32 SRNAMT
227  INTEGER INFOT, NUNIT
228 * ..
229 * .. Common blocks ..
230  COMMON / infoc / infot, nunit, ok, lerr
231  COMMON / srnamc / srnamt
232 * ..
233 * .. Data statements ..
234  DATA iseedy / 1988, 1989, 1990, 1991 /
235  DATA uplos / 'U', 'L' /
236 * ..
237 * .. Executable Statements ..
238 *
239 * Initialize constants and the random number seed.
240 *
241  path( 1: 1 ) = 'Single precision'
242  path( 2: 3 ) = 'SY'
243  nrun = 0
244  nfail = 0
245  nerrs = 0
246  DO 10 i = 1, 4
247  iseed( i ) = iseedy( i )
248  10 CONTINUE
249 *
250 * Test the error exits
251 *
252  IF( tsterr )
253  $ CALL serrsy( path, nout )
254  infot = 0
255 *
256 * Set the minimum block size for which the block routine should
257 * be used, which will be later returned by ILAENV
258 *
259  CALL xlaenv( 2, 2 )
260 *
261 * Do for each value of N in NVAL
262 *
263  DO 180 in = 1, nn
264  n = nval( in )
265  lda = max( n, 1 )
266  xtype = 'N'
267  nimat = ntypes
268  IF( n.LE.0 )
269  $ nimat = 1
270 *
271  izero = 0
272 *
273 * Do for each value of matrix type IMAT
274 *
275  DO 170 imat = 1, nimat
276 *
277 * Do the tests only if DOTYPE( IMAT ) is true.
278 *
279  IF( .NOT.dotype( imat ) )
280  $ GO TO 170
281 *
282 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
283 *
284  zerot = imat.GE.3 .AND. imat.LE.6
285  IF( zerot .AND. n.LT.imat-2 )
286  $ GO TO 170
287 *
288 * Do first for UPLO = 'U', then for UPLO = 'L'
289 *
290  DO 160 iuplo = 1, 2
291  uplo = uplos( iuplo )
292 *
293 * Begin generate the test matrix A.
294 *
295 * Set up parameters with SLATB4 for the matrix generator
296 * based on the type of matrix to be generated.
297 *
298  CALL slatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
299  $ cndnum, dist )
300 *
301 * Generate a matrix with SLATMS.
302 *
303  srnamt = 'SLATMS'
304  CALL slatms( n, n, dist, iseed, TYPE, rwork, mode,
305  $ cndnum, anorm, kl, ku, uplo, a, lda, work,
306  $ info )
307 *
308 * Check error code from SLATMS and handle error.
309 *
310  IF( info.NE.0 ) THEN
311  CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
312  $ -1, -1, imat, nfail, nerrs, nout )
313 *
314 * Skip all tests for this generated matrix
315 *
316  GO TO 160
317  END IF
318 *
319 * For matrix types 3-6, zero one or more rows and
320 * columns of the matrix to test that INFO is returned
321 * correctly.
322 *
323  IF( zerot ) THEN
324  IF( imat.EQ.3 ) THEN
325  izero = 1
326  ELSE IF( imat.EQ.4 ) THEN
327  izero = n
328  ELSE
329  izero = n / 2 + 1
330  END IF
331 *
332  IF( imat.LT.6 ) THEN
333 *
334 * Set row and column IZERO to zero.
335 *
336  IF( iuplo.EQ.1 ) THEN
337  ioff = ( izero-1 )*lda
338  DO 20 i = 1, izero - 1
339  a( ioff+i ) = zero
340  20 CONTINUE
341  ioff = ioff + izero
342  DO 30 i = izero, n
343  a( ioff ) = zero
344  ioff = ioff + lda
345  30 CONTINUE
346  ELSE
347  ioff = izero
348  DO 40 i = 1, izero - 1
349  a( ioff ) = zero
350  ioff = ioff + lda
351  40 CONTINUE
352  ioff = ioff - izero
353  DO 50 i = izero, n
354  a( ioff+i ) = zero
355  50 CONTINUE
356  END IF
357  ELSE
358  IF( iuplo.EQ.1 ) THEN
359 *
360 * Set the first IZERO rows and columns to zero.
361 *
362  ioff = 0
363  DO 70 j = 1, n
364  i2 = min( j, izero )
365  DO 60 i = 1, i2
366  a( ioff+i ) = zero
367  60 CONTINUE
368  ioff = ioff + lda
369  70 CONTINUE
370  ELSE
371 *
372 * Set the last IZERO rows and columns to zero.
373 *
374  ioff = 0
375  DO 90 j = 1, n
376  i1 = max( j, izero )
377  DO 80 i = i1, n
378  a( ioff+i ) = zero
379  80 CONTINUE
380  ioff = ioff + lda
381  90 CONTINUE
382  END IF
383  END IF
384  ELSE
385  izero = 0
386  END IF
387 *
388 * End generate the test matrix A.
389 *
390 *
391 * Do for each value of NB in NBVAL
392 *
393  DO 150 inb = 1, nnb
394 *
395 * Set the optimal blocksize, which will be later
396 * returned by ILAENV.
397 *
398  nb = nbval( inb )
399  CALL xlaenv( 1, nb )
400 *
401 * Copy the test matrix A into matrix AFAC which
402 * will be factorized in place. This is needed to
403 * preserve the test matrix A for subsequent tests.
404 *
405  CALL slacpy( uplo, n, n, a, lda, afac, lda )
406 *
407 * Compute the L*D*L**T or U*D*U**T factorization of the
408 * matrix. IWORK stores details of the interchanges and
409 * the block structure of D. AINV is a work array for
410 * block factorization, LWORK is the length of AINV.
411 *
412  lwork = max( 2, nb )*lda
413  srnamt = 'SSYTRF'
414  CALL ssytrf( uplo, n, afac, lda, iwork, ainv, lwork,
415  $ info )
416 *
417 * Adjust the expected value of INFO to account for
418 * pivoting.
419 *
420  k = izero
421  IF( k.GT.0 ) THEN
422  100 CONTINUE
423  IF( iwork( k ).LT.0 ) THEN
424  IF( iwork( k ).NE.-k ) THEN
425  k = -iwork( k )
426  GO TO 100
427  END IF
428  ELSE IF( iwork( k ).NE.k ) THEN
429  k = iwork( k )
430  GO TO 100
431  END IF
432  END IF
433 *
434 * Check error code from SSYTRF and handle error.
435 *
436  IF( info.NE.k )
437  $ CALL alaerh( path, 'SSYTRF', info, k, uplo, n, n,
438  $ -1, -1, nb, imat, nfail, nerrs, nout )
439 *
440 * Set the condition estimate flag if the INFO is not 0.
441 *
442  IF( info.NE.0 ) THEN
443  trfcon = .true.
444  ELSE
445  trfcon = .false.
446  END IF
447 *
448 *+ TEST 1
449 * Reconstruct matrix from factors and compute residual.
450 *
451  CALL ssyt01( uplo, n, a, lda, afac, lda, iwork, ainv,
452  $ lda, rwork, result( 1 ) )
453  nt = 1
454 *
455 *+ TEST 2
456 * Form the inverse and compute the residual,
457 * if the factorization was competed without INFO > 0
458 * (i.e. there is no zero rows and columns).
459 * Do it only for the first block size.
460 *
461  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
462  CALL slacpy( uplo, n, n, afac, lda, ainv, lda )
463  srnamt = 'SSYTRI2'
464  lwork = (n+nb+1)*(nb+3)
465  CALL ssytri2( uplo, n, ainv, lda, iwork, work,
466  $ lwork, info )
467 *
468 * Check error code from SSYTRI2 and handle error.
469 *
470  IF( info.NE.0 )
471  $ CALL alaerh( path, 'SSYTRI2', info, -1, uplo, n,
472  $ n, -1, -1, -1, imat, nfail, nerrs,
473  $ nout )
474 *
475 * Compute the residual for a symmetric matrix times
476 * its inverse.
477 *
478  CALL spot03( uplo, n, a, lda, ainv, lda, work, lda,
479  $ rwork, rcondc, result( 2 ) )
480  nt = 2
481  END IF
482 *
483 * Print information about the tests that did not pass
484 * the threshold.
485 *
486  DO 110 k = 1, nt
487  IF( result( k ).GE.thresh ) THEN
488  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
489  $ CALL alahd( nout, path )
490  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
491  $ result( k )
492  nfail = nfail + 1
493  END IF
494  110 CONTINUE
495  nrun = nrun + nt
496 *
497 * Skip the other tests if this is not the first block
498 * size.
499 *
500  IF( inb.GT.1 )
501  $ GO TO 150
502 *
503 * Do only the condition estimate if INFO is not 0.
504 *
505  IF( trfcon ) THEN
506  rcondc = zero
507  GO TO 140
508  END IF
509 *
510 * Do for each value of NRHS in NSVAL.
511 *
512  DO 130 irhs = 1, nns
513  nrhs = nsval( irhs )
514 *
515 *+ TEST 3 (Using DSYTRS)
516 * Solve and compute residual for A * X = B.
517 *
518 * Choose a set of NRHS random solution vectors
519 * stored in XACT and set up the right hand side B
520 *
521  srnamt = 'SLARHS'
522  CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
523  $ nrhs, a, lda, xact, lda, b, lda,
524  $ iseed, info )
525  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
526 *
527  srnamt = 'SSYTRS'
528  CALL ssytrs( uplo, n, nrhs, afac, lda, iwork, x,
529  $ lda, info )
530 *
531 * Check error code from SSYTRS and handle error.
532 *
533  IF( info.NE.0 )
534  $ CALL alaerh( path, 'SSYTRS', info, 0, uplo, n,
535  $ n, -1, -1, nrhs, imat, nfail,
536  $ nerrs, nout )
537 *
538  CALL slacpy( 'Full', n, nrhs, b, lda, work, lda )
539 *
540 * Compute the residual for the solution
541 *
542  CALL spot02( uplo, n, nrhs, a, lda, x, lda, work,
543  $ lda, rwork, result( 3 ) )
544 *
545 *+ TEST 4 (Using DSYTRS2)
546 * Solve and compute residual for A * X = B.
547 *
548 * Choose a set of NRHS random solution vectors
549 * stored in XACT and set up the right hand side B
550 *
551  srnamt = 'SLARHS'
552  CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
553  $ nrhs, a, lda, xact, lda, b, lda,
554  $ iseed, info )
555  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
556 *
557  srnamt = 'DSYTRS2'
558  CALL ssytrs2( uplo, n, nrhs, afac, lda, iwork, x,
559  $ lda, work, info )
560 *
561 * Check error code from SSYTRS2 and handle error.
562 *
563  IF( info.NE.0 )
564  $ CALL alaerh( path, 'SSYTRS2', info, 0, uplo, n,
565  $ n, -1, -1, nrhs, imat, nfail,
566  $ nerrs, nout )
567 *
568  CALL slacpy( 'Full', n, nrhs, b, lda, work, lda )
569 *
570 * Compute the residual for the solution
571 *
572  CALL spot02( uplo, n, nrhs, a, lda, x, lda, work,
573  $ lda, rwork, result( 4 ) )
574 *
575 *+ TEST 5
576 * Check solution from generated exact solution.
577 *
578  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
579  $ result( 5 ) )
580 *
581 *+ TESTS 6, 7, and 8
582 * Use iterative refinement to improve the solution.
583 *
584  srnamt = 'SSYRFS'
585  CALL ssyrfs( uplo, n, nrhs, a, lda, afac, lda,
586  $ iwork, b, lda, x, lda, rwork,
587  $ rwork( nrhs+1 ), work, iwork( n+1 ),
588  $ info )
589 *
590 * Check error code from SSYRFS and handle error.
591 *
592  IF( info.NE.0 )
593  $ CALL alaerh( path, 'SSYRFS', info, 0, uplo, n,
594  $ n, -1, -1, nrhs, imat, nfail,
595  $ nerrs, nout )
596 *
597  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
598  $ result( 6 ) )
599  CALL spot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
600  $ xact, lda, rwork, rwork( nrhs+1 ),
601  $ result( 7 ) )
602 *
603 * Print information about the tests that did not pass
604 * the threshold.
605 *
606  DO 120 k = 3, 8
607  IF( result( k ).GE.thresh ) THEN
608  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
609  $ CALL alahd( nout, path )
610  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
611  $ imat, k, result( k )
612  nfail = nfail + 1
613  END IF
614  120 CONTINUE
615  nrun = nrun + 6
616 *
617 * End do for each value of NRHS in NSVAL.
618 *
619  130 CONTINUE
620 *
621 *+ TEST 9
622 * Get an estimate of RCOND = 1/CNDNUM.
623 *
624  140 CONTINUE
625  anorm = slansy( '1', uplo, n, a, lda, rwork )
626  srnamt = 'SSYCON'
627  CALL ssycon( uplo, n, afac, lda, iwork, anorm, rcond,
628  $ work, iwork( n+1 ), info )
629 *
630 * Check error code from SSYCON and handle error.
631 *
632  IF( info.NE.0 )
633  $ CALL alaerh( path, 'SSYCON', info, 0, uplo, n, n,
634  $ -1, -1, -1, imat, nfail, nerrs, nout )
635 *
636 * Compute the test ratio to compare to values of RCOND
637 *
638  result( 9 ) = sget06( rcond, rcondc )
639 *
640 * Print information about the tests that did not pass
641 * the threshold.
642 *
643  IF( result( 9 ).GE.thresh ) THEN
644  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
645  $ CALL alahd( nout, path )
646  WRITE( nout, fmt = 9997 )uplo, n, imat, 9,
647  $ result( 9 )
648  nfail = nfail + 1
649  END IF
650  nrun = nrun + 1
651  150 CONTINUE
652 *
653  160 CONTINUE
654  170 CONTINUE
655  180 CONTINUE
656 *
657 * Print a summary of the results.
658 *
659  CALL alasum( path, nout, nfail, nrun, nerrs )
660 *
661  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
662  $ i2, ', test ', i2, ', ratio =', g12.5 )
663  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
664  $ i2, ', test(', i2, ') =', g12.5 )
665  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
666  $ ', test(', i2, ') =', g12.5 )
667  RETURN
668 *
669 * End of SCHKSY
670 *
671  END
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:321
subroutine ssytrs2(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO)
SSYTRS2
Definition: ssytrs2.f:132
subroutine ssytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
SSYTRF
Definition: ssytrf.f:182
subroutine ssyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
SSYRFS
Definition: ssyrfs.f:191
subroutine ssytri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
SSYTRI2
Definition: ssytri2.f:127
subroutine ssycon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
SSYCON
Definition: ssycon.f:130
subroutine ssyconv(UPLO, WAY, N, A, LDA, IPIV, E, INFO)
SSYCONV
Definition: ssyconv.f:114
subroutine ssytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
SSYTRS
Definition: ssytrs.f:120
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:205
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:120
subroutine schksy(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
SCHKSY
Definition: schksy.f:170
subroutine serrsy(PATH, NUNIT)
SERRSY
Definition: serrsy.f:55
subroutine spot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
SPOT05
Definition: spot05.f:164
subroutine spot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
SPOT03
Definition: spot03.f:125
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:102
subroutine ssyt01(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
SSYT01
Definition: ssyt01.f:124
subroutine spot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
SPOT02
Definition: spot02.f:127