LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssyrfs()

subroutine ssyrfs ( character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

SSYRFS

Download SSYRFS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSYRFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is symmetric indefinite, and
!> provides error bounds and backward error estimates for the solution.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in]A
!>          A is REAL array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]AF
!>          AF is REAL array, dimension (LDAF,N)
!>          The factored form of the matrix A.  AF contains the block
!>          diagonal matrix D and the multipliers used to obtain the
!>          factor U or L from the factorization A = U*D*U**T or
!>          A = L*D*L**T as computed by SSYTRF.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>          The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D
!>          as determined by SSYTRF.
!> 
[in]B
!>          B is REAL array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in,out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by SSYTRS.
!>          On exit, the improved solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is REAL array, dimension (3*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Internal Parameters:
!>  ITMAX is the maximum number of steps of iterative refinement.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 187 of file ssyrfs.f.

190*
191* -- LAPACK computational routine --
192* -- LAPACK is a software package provided by Univ. of Tennessee, --
193* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
194*
195* .. Scalar Arguments ..
196 CHARACTER UPLO
197 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
198* ..
199* .. Array Arguments ..
200 INTEGER IPIV( * ), IWORK( * )
201 REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
202 $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
203* ..
204*
205* =====================================================================
206*
207* .. Parameters ..
208 INTEGER ITMAX
209 parameter( itmax = 5 )
210 REAL ZERO
211 parameter( zero = 0.0e+0 )
212 REAL ONE
213 parameter( one = 1.0e+0 )
214 REAL TWO
215 parameter( two = 2.0e+0 )
216 REAL THREE
217 parameter( three = 3.0e+0 )
218* ..
219* .. Local Scalars ..
220 LOGICAL UPPER
221 INTEGER COUNT, I, J, K, KASE, NZ
222 REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
223* ..
224* .. Local Arrays ..
225 INTEGER ISAVE( 3 )
226* ..
227* .. External Subroutines ..
228 EXTERNAL saxpy, scopy, slacn2, ssymv, ssytrs,
229 $ xerbla
230* ..
231* .. Intrinsic Functions ..
232 INTRINSIC abs, max
233* ..
234* .. External Functions ..
235 LOGICAL LSAME
236 REAL SLAMCH
237 EXTERNAL lsame, slamch
238* ..
239* .. Executable Statements ..
240*
241* Test the input parameters.
242*
243 info = 0
244 upper = lsame( uplo, 'U' )
245 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
246 info = -1
247 ELSE IF( n.LT.0 ) THEN
248 info = -2
249 ELSE IF( nrhs.LT.0 ) THEN
250 info = -3
251 ELSE IF( lda.LT.max( 1, n ) ) THEN
252 info = -5
253 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
254 info = -7
255 ELSE IF( ldb.LT.max( 1, n ) ) THEN
256 info = -10
257 ELSE IF( ldx.LT.max( 1, n ) ) THEN
258 info = -12
259 END IF
260 IF( info.NE.0 ) THEN
261 CALL xerbla( 'SSYRFS', -info )
262 RETURN
263 END IF
264*
265* Quick return if possible
266*
267 IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
268 DO 10 j = 1, nrhs
269 ferr( j ) = zero
270 berr( j ) = zero
271 10 CONTINUE
272 RETURN
273 END IF
274*
275* NZ = maximum number of nonzero elements in each row of A, plus 1
276*
277 nz = n + 1
278 eps = slamch( 'Epsilon' )
279 safmin = slamch( 'Safe minimum' )
280 safe1 = real( nz )*safmin
281 safe2 = safe1 / eps
282*
283* Do for each right hand side
284*
285 DO 140 j = 1, nrhs
286*
287 count = 1
288 lstres = three
289 20 CONTINUE
290*
291* Loop until stopping criterion is satisfied.
292*
293* Compute residual R = B - A * X
294*
295 CALL scopy( n, b( 1, j ), 1, work( n+1 ), 1 )
296 CALL ssymv( uplo, n, -one, a, lda, x( 1, j ), 1, one,
297 $ work( n+1 ), 1 )
298*
299* Compute componentwise relative backward error from formula
300*
301* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
302*
303* where abs(Z) is the componentwise absolute value of the matrix
304* or vector Z. If the i-th component of the denominator is less
305* than SAFE2, then SAFE1 is added to the i-th components of the
306* numerator and denominator before dividing.
307*
308 DO 30 i = 1, n
309 work( i ) = abs( b( i, j ) )
310 30 CONTINUE
311*
312* Compute abs(A)*abs(X) + abs(B).
313*
314 IF( upper ) THEN
315 DO 50 k = 1, n
316 s = zero
317 xk = abs( x( k, j ) )
318 DO 40 i = 1, k - 1
319 work( i ) = work( i ) + abs( a( i, k ) )*xk
320 s = s + abs( a( i, k ) )*abs( x( i, j ) )
321 40 CONTINUE
322 work( k ) = work( k ) + abs( a( k, k ) )*xk + s
323 50 CONTINUE
324 ELSE
325 DO 70 k = 1, n
326 s = zero
327 xk = abs( x( k, j ) )
328 work( k ) = work( k ) + abs( a( k, k ) )*xk
329 DO 60 i = k + 1, n
330 work( i ) = work( i ) + abs( a( i, k ) )*xk
331 s = s + abs( a( i, k ) )*abs( x( i, j ) )
332 60 CONTINUE
333 work( k ) = work( k ) + s
334 70 CONTINUE
335 END IF
336 s = zero
337 DO 80 i = 1, n
338 IF( work( i ).GT.safe2 ) THEN
339 s = max( s, abs( work( n+i ) ) / work( i ) )
340 ELSE
341 s = max( s, ( abs( work( n+i ) )+safe1 ) /
342 $ ( work( i )+safe1 ) )
343 END IF
344 80 CONTINUE
345 berr( j ) = s
346*
347* Test stopping criterion. Continue iterating if
348* 1) The residual BERR(J) is larger than machine epsilon, and
349* 2) BERR(J) decreased by at least a factor of 2 during the
350* last iteration, and
351* 3) At most ITMAX iterations tried.
352*
353 IF( berr( j ).GT.eps .AND. two*berr( j ).LE.lstres .AND.
354 $ count.LE.itmax ) THEN
355*
356* Update solution and try again.
357*
358 CALL ssytrs( uplo, n, 1, af, ldaf, ipiv, work( n+1 ), n,
359 $ info )
360 CALL saxpy( n, one, work( n+1 ), 1, x( 1, j ), 1 )
361 lstres = berr( j )
362 count = count + 1
363 GO TO 20
364 END IF
365*
366* Bound error from formula
367*
368* norm(X - XTRUE) / norm(X) .le. FERR =
369* norm( abs(inv(A))*
370* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
371*
372* where
373* norm(Z) is the magnitude of the largest component of Z
374* inv(A) is the inverse of A
375* abs(Z) is the componentwise absolute value of the matrix or
376* vector Z
377* NZ is the maximum number of nonzeros in any row of A, plus 1
378* EPS is machine epsilon
379*
380* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
381* is incremented by SAFE1 if the i-th component of
382* abs(A)*abs(X) + abs(B) is less than SAFE2.
383*
384* Use SLACN2 to estimate the infinity-norm of the matrix
385* inv(A) * diag(W),
386* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
387*
388 DO 90 i = 1, n
389 IF( work( i ).GT.safe2 ) THEN
390 work( i ) = abs( work( n+i ) ) + real( nz )*eps*work( i )
391 ELSE
392 work( i ) = abs( work( n+i ) ) + real( nz )*eps*work( i )
393 $ + safe1
394 END IF
395 90 CONTINUE
396*
397 kase = 0
398 100 CONTINUE
399 CALL slacn2( n, work( 2*n+1 ), work( n+1 ), iwork,
400 $ ferr( j ),
401 $ kase, isave )
402 IF( kase.NE.0 ) THEN
403 IF( kase.EQ.1 ) THEN
404*
405* Multiply by diag(W)*inv(A**T).
406*
407 CALL ssytrs( uplo, n, 1, af, ldaf, ipiv, work( n+1 ),
408 $ n,
409 $ info )
410 DO 110 i = 1, n
411 work( n+i ) = work( i )*work( n+i )
412 110 CONTINUE
413 ELSE IF( kase.EQ.2 ) THEN
414*
415* Multiply by inv(A)*diag(W).
416*
417 DO 120 i = 1, n
418 work( n+i ) = work( i )*work( n+i )
419 120 CONTINUE
420 CALL ssytrs( uplo, n, 1, af, ldaf, ipiv, work( n+1 ),
421 $ n,
422 $ info )
423 END IF
424 GO TO 100
425 END IF
426*
427* Normalize error.
428*
429 lstres = zero
430 DO 130 i = 1, n
431 lstres = max( lstres, abs( x( i, j ) ) )
432 130 CONTINUE
433 IF( lstres.NE.zero )
434 $ ferr( j ) = ferr( j ) / lstres
435*
436 140 CONTINUE
437*
438 RETURN
439*
440* End of SSYRFS
441*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
SSYMV
Definition ssymv.f:152
subroutine ssytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
SSYTRS
Definition ssytrs.f:118
subroutine slacn2(n, v, x, isgn, est, kase, isave)
SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition slacn2.f:134
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: