LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ssytrf.f
Go to the documentation of this file.
1*> \brief \b SSYTRF
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SSYTRF + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrf.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrf.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrf.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER INFO, LDA, LWORK, N
24* ..
25* .. Array Arguments ..
26* INTEGER IPIV( * )
27* REAL A( LDA, * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> SSYTRF computes the factorization of a real symmetric matrix A using
37*> the Bunch-Kaufman diagonal pivoting method. The form of the
38*> factorization is
39*>
40*> A = U**T*D*U or A = L*D*L**T
41*>
42*> where U (or L) is a product of permutation and unit upper (lower)
43*> triangular matrices, and D is symmetric and block diagonal with
44*> 1-by-1 and 2-by-2 diagonal blocks.
45*>
46*> This is the blocked version of the algorithm, calling Level 3 BLAS.
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] UPLO
53*> \verbatim
54*> UPLO is CHARACTER*1
55*> = 'U': Upper triangle of A is stored;
56*> = 'L': Lower triangle of A is stored.
57*> \endverbatim
58*>
59*> \param[in] N
60*> \verbatim
61*> N is INTEGER
62*> The order of the matrix A. N >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is REAL array, dimension (LDA,N)
68*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
69*> N-by-N upper triangular part of A contains the upper
70*> triangular part of the matrix A, and the strictly lower
71*> triangular part of A is not referenced. If UPLO = 'L', the
72*> leading N-by-N lower triangular part of A contains the lower
73*> triangular part of the matrix A, and the strictly upper
74*> triangular part of A is not referenced.
75*>
76*> On exit, the block diagonal matrix D and the multipliers used
77*> to obtain the factor U or L (see below for further details).
78*> \endverbatim
79*>
80*> \param[in] LDA
81*> \verbatim
82*> LDA is INTEGER
83*> The leading dimension of the array A. LDA >= max(1,N).
84*> \endverbatim
85*>
86*> \param[out] IPIV
87*> \verbatim
88*> IPIV is INTEGER array, dimension (N)
89*> Details of the interchanges and the block structure of D.
90*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
91*> interchanged and D(k,k) is a 1-by-1 diagonal block.
92*> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
93*> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
94*> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
95*> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
96*> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
97*> \endverbatim
98*>
99*> \param[out] WORK
100*> \verbatim
101*> WORK is REAL array, dimension (MAX(1,LWORK))
102*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
103*> \endverbatim
104*>
105*> \param[in] LWORK
106*> \verbatim
107*> LWORK is INTEGER
108*> The length of WORK. LWORK >=1. For best performance
109*> LWORK >= N*NB, where NB is the block size returned by ILAENV.
110*>
111*> If LWORK = -1, then a workspace query is assumed; the routine
112*> only calculates the optimal size of the WORK array, returns
113*> this value as the first entry of the WORK array, and no error
114*> message related to LWORK is issued by XERBLA.
115*> \endverbatim
116*>
117*> \param[out] INFO
118*> \verbatim
119*> INFO is INTEGER
120*> = 0: successful exit
121*> < 0: if INFO = -i, the i-th argument had an illegal value
122*> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
123*> has been completed, but the block diagonal matrix D is
124*> exactly singular, and division by zero will occur if it
125*> is used to solve a system of equations.
126*> \endverbatim
127*
128* Authors:
129* ========
130*
131*> \author Univ. of Tennessee
132*> \author Univ. of California Berkeley
133*> \author Univ. of Colorado Denver
134*> \author NAG Ltd.
135*
136*> \ingroup hetrf
137*
138*> \par Further Details:
139* =====================
140*>
141*> \verbatim
142*>
143*> If UPLO = 'U', then A = U**T*D*U, where
144*> U = P(n)*U(n)* ... *P(k)U(k)* ...,
145*> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
146*> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
147*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
148*> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
149*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
150*>
151*> ( I v 0 ) k-s
152*> U(k) = ( 0 I 0 ) s
153*> ( 0 0 I ) n-k
154*> k-s s n-k
155*>
156*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
157*> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
158*> and A(k,k), and v overwrites A(1:k-2,k-1:k).
159*>
160*> If UPLO = 'L', then A = L*D*L**T, where
161*> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
162*> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
163*> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
164*> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
165*> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
166*> that if the diagonal block D(k) is of order s (s = 1 or 2), then
167*>
168*> ( I 0 0 ) k-1
169*> L(k) = ( 0 I 0 ) s
170*> ( 0 v I ) n-k-s+1
171*> k-1 s n-k-s+1
172*>
173*> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
174*> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
175*> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
176*> \endverbatim
177*>
178* =====================================================================
179 SUBROUTINE ssytrf( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
180*
181* -- LAPACK computational routine --
182* -- LAPACK is a software package provided by Univ. of Tennessee, --
183* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
184*
185* .. Scalar Arguments ..
186 CHARACTER UPLO
187 INTEGER INFO, LDA, LWORK, N
188* ..
189* .. Array Arguments ..
190 INTEGER IPIV( * )
191 REAL A( LDA, * ), WORK( * )
192* ..
193*
194* =====================================================================
195*
196* .. Local Scalars ..
197 LOGICAL LQUERY, UPPER
198 INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
199* ..
200* .. External Functions ..
201 LOGICAL LSAME
202 INTEGER ILAENV
203 REAL SROUNDUP_LWORK
204 EXTERNAL lsame, ilaenv, sroundup_lwork
205* ..
206* .. External Subroutines ..
207 EXTERNAL slasyf, ssytf2, xerbla
208* ..
209* .. Intrinsic Functions ..
210 INTRINSIC max
211* ..
212* .. Executable Statements ..
213*
214* Test the input parameters.
215*
216 info = 0
217 upper = lsame( uplo, 'U' )
218 lquery = ( lwork.EQ.-1 )
219 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
220 info = -1
221 ELSE IF( n.LT.0 ) THEN
222 info = -2
223 ELSE IF( lda.LT.max( 1, n ) ) THEN
224 info = -4
225 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
226 info = -7
227 END IF
228*
229 IF( info.EQ.0 ) THEN
230*
231* Determine the block size
232*
233 nb = ilaenv( 1, 'SSYTRF', uplo, n, -1, -1, -1 )
234 lwkopt = max( 1, n*nb )
235 work( 1 ) = sroundup_lwork( lwkopt )
236 END IF
237*
238 IF( info.NE.0 ) THEN
239 CALL xerbla( 'SSYTRF', -info )
240 RETURN
241 ELSE IF( lquery ) THEN
242 RETURN
243 END IF
244*
245 nbmin = 2
246 ldwork = n
247 IF( nb.GT.1 .AND. nb.LT.n ) THEN
248 iws = ldwork*nb
249 IF( lwork.LT.iws ) THEN
250 nb = max( lwork / ldwork, 1 )
251 nbmin = max( 2, ilaenv( 2, 'SSYTRF', uplo, n, -1, -1,
252 $ -1 ) )
253 END IF
254 ELSE
255 iws = 1
256 END IF
257 IF( nb.LT.nbmin )
258 $ nb = n
259*
260 IF( upper ) THEN
261*
262* Factorize A as U**T*D*U using the upper triangle of A
263*
264* K is the main loop index, decreasing from N to 1 in steps of
265* KB, where KB is the number of columns factorized by SLASYF;
266* KB is either NB or NB-1, or K for the last block
267*
268 k = n
269 10 CONTINUE
270*
271* If K < 1, exit from loop
272*
273 IF( k.LT.1 )
274 $ GO TO 40
275*
276 IF( k.GT.nb ) THEN
277*
278* Factorize columns k-kb+1:k of A and use blocked code to
279* update columns 1:k-kb
280*
281 CALL slasyf( uplo, k, nb, kb, a, lda, ipiv, work, ldwork,
282 $ iinfo )
283 ELSE
284*
285* Use unblocked code to factorize columns 1:k of A
286*
287 CALL ssytf2( uplo, k, a, lda, ipiv, iinfo )
288 kb = k
289 END IF
290*
291* Set INFO on the first occurrence of a zero pivot
292*
293 IF( info.EQ.0 .AND. iinfo.GT.0 )
294 $ info = iinfo
295*
296* Decrease K and return to the start of the main loop
297*
298 k = k - kb
299 GO TO 10
300*
301 ELSE
302*
303* Factorize A as L*D*L**T using the lower triangle of A
304*
305* K is the main loop index, increasing from 1 to N in steps of
306* KB, where KB is the number of columns factorized by SLASYF;
307* KB is either NB or NB-1, or N-K+1 for the last block
308*
309 k = 1
310 20 CONTINUE
311*
312* If K > N, exit from loop
313*
314 IF( k.GT.n )
315 $ GO TO 40
316*
317 IF( k.LE.n-nb ) THEN
318*
319* Factorize columns k:k+kb-1 of A and use blocked code to
320* update columns k+kb:n
321*
322 CALL slasyf( uplo, n-k+1, nb, kb, a( k, k ), lda,
323 $ ipiv( k ),
324 $ work, ldwork, iinfo )
325 ELSE
326*
327* Use unblocked code to factorize columns k:n of A
328*
329 CALL ssytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ),
330 $ iinfo )
331 kb = n - k + 1
332 END IF
333*
334* Set INFO on the first occurrence of a zero pivot
335*
336 IF( info.EQ.0 .AND. iinfo.GT.0 )
337 $ info = iinfo + k - 1
338*
339* Adjust IPIV
340*
341 DO 30 j = k, k + kb - 1
342 IF( ipiv( j ).GT.0 ) THEN
343 ipiv( j ) = ipiv( j ) + k - 1
344 ELSE
345 ipiv( j ) = ipiv( j ) - k + 1
346 END IF
347 30 CONTINUE
348*
349* Increase K and return to the start of the main loop
350*
351 k = k + kb
352 GO TO 20
353*
354 END IF
355*
356 40 CONTINUE
357*
358 work( 1 ) = sroundup_lwork( lwkopt )
359 RETURN
360*
361* End of SSYTRF
362*
363 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssytf2(uplo, n, a, lda, ipiv, info)
SSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition ssytf2.f:193
subroutine ssytrf(uplo, n, a, lda, ipiv, work, lwork, info)
SSYTRF
Definition ssytrf.f:180
subroutine slasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
SLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diagonal p...
Definition slasyf.f:175