LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssytrf()

subroutine ssytrf ( character  uplo,
integer  n,
real, dimension( lda, * )  a,
integer  lda,
integer, dimension( * )  ipiv,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

SSYTRF

Download SSYTRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SSYTRF computes the factorization of a real symmetric matrix A using
 the Bunch-Kaufman diagonal pivoting method.  The form of the
 factorization is

    A = U**T*D*U  or  A = L*D*L**T

 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, and D is symmetric and block diagonal with
 1-by-1 and 2-by-2 diagonal blocks.

 This is the blocked version of the algorithm, calling Level 3 BLAS.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L (see below for further details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK >=1.  For best performance
          LWORK >= N*NB, where NB is the block size returned by ILAENV.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                has been completed, but the block diagonal matrix D is
                exactly singular, and division by zero will occur if it
                is used to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  If UPLO = 'U', then A = U**T*D*U, where
     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    v    0   )   k-s
     U(k) =  (   0    I    0   )   s
             (   0    0    I   )   n-k
                k-s   s   n-k

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  and A(k,k), and v overwrites A(1:k-2,k-1:k).

  If UPLO = 'L', then A = L*D*L**T, where
     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    0     0   )  k-1
     L(k) =  (   0    I     0   )  s
             (   0    v     I   )  n-k-s+1
                k-1   s  n-k-s+1

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

Definition at line 181 of file ssytrf.f.

182*
183* -- LAPACK computational routine --
184* -- LAPACK is a software package provided by Univ. of Tennessee, --
185* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
186*
187* .. Scalar Arguments ..
188 CHARACTER UPLO
189 INTEGER INFO, LDA, LWORK, N
190* ..
191* .. Array Arguments ..
192 INTEGER IPIV( * )
193 REAL A( LDA, * ), WORK( * )
194* ..
195*
196* =====================================================================
197*
198* .. Local Scalars ..
199 LOGICAL LQUERY, UPPER
200 INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
201* ..
202* .. External Functions ..
203 LOGICAL LSAME
204 INTEGER ILAENV
205 REAL SROUNDUP_LWORK
206 EXTERNAL lsame, ilaenv, sroundup_lwork
207* ..
208* .. External Subroutines ..
209 EXTERNAL slasyf, ssytf2, xerbla
210* ..
211* .. Intrinsic Functions ..
212 INTRINSIC max
213* ..
214* .. Executable Statements ..
215*
216* Test the input parameters.
217*
218 info = 0
219 upper = lsame( uplo, 'U' )
220 lquery = ( lwork.EQ.-1 )
221 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
222 info = -1
223 ELSE IF( n.LT.0 ) THEN
224 info = -2
225 ELSE IF( lda.LT.max( 1, n ) ) THEN
226 info = -4
227 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
228 info = -7
229 END IF
230*
231 IF( info.EQ.0 ) THEN
232*
233* Determine the block size
234*
235 nb = ilaenv( 1, 'SSYTRF', uplo, n, -1, -1, -1 )
236 lwkopt = max( 1, n*nb )
237 work( 1 ) = sroundup_lwork(lwkopt)
238 END IF
239*
240 IF( info.NE.0 ) THEN
241 CALL xerbla( 'SSYTRF', -info )
242 RETURN
243 ELSE IF( lquery ) THEN
244 RETURN
245 END IF
246*
247 nbmin = 2
248 ldwork = n
249 IF( nb.GT.1 .AND. nb.LT.n ) THEN
250 iws = ldwork*nb
251 IF( lwork.LT.iws ) THEN
252 nb = max( lwork / ldwork, 1 )
253 nbmin = max( 2, ilaenv( 2, 'SSYTRF', uplo, n, -1, -1, -1 ) )
254 END IF
255 ELSE
256 iws = 1
257 END IF
258 IF( nb.LT.nbmin )
259 $ nb = n
260*
261 IF( upper ) THEN
262*
263* Factorize A as U**T*D*U using the upper triangle of A
264*
265* K is the main loop index, decreasing from N to 1 in steps of
266* KB, where KB is the number of columns factorized by SLASYF;
267* KB is either NB or NB-1, or K for the last block
268*
269 k = n
270 10 CONTINUE
271*
272* If K < 1, exit from loop
273*
274 IF( k.LT.1 )
275 $ GO TO 40
276*
277 IF( k.GT.nb ) THEN
278*
279* Factorize columns k-kb+1:k of A and use blocked code to
280* update columns 1:k-kb
281*
282 CALL slasyf( uplo, k, nb, kb, a, lda, ipiv, work, ldwork,
283 $ iinfo )
284 ELSE
285*
286* Use unblocked code to factorize columns 1:k of A
287*
288 CALL ssytf2( uplo, k, a, lda, ipiv, iinfo )
289 kb = k
290 END IF
291*
292* Set INFO on the first occurrence of a zero pivot
293*
294 IF( info.EQ.0 .AND. iinfo.GT.0 )
295 $ info = iinfo
296*
297* Decrease K and return to the start of the main loop
298*
299 k = k - kb
300 GO TO 10
301*
302 ELSE
303*
304* Factorize A as L*D*L**T using the lower triangle of A
305*
306* K is the main loop index, increasing from 1 to N in steps of
307* KB, where KB is the number of columns factorized by SLASYF;
308* KB is either NB or NB-1, or N-K+1 for the last block
309*
310 k = 1
311 20 CONTINUE
312*
313* If K > N, exit from loop
314*
315 IF( k.GT.n )
316 $ GO TO 40
317*
318 IF( k.LE.n-nb ) THEN
319*
320* Factorize columns k:k+kb-1 of A and use blocked code to
321* update columns k+kb:n
322*
323 CALL slasyf( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),
324 $ work, ldwork, iinfo )
325 ELSE
326*
327* Use unblocked code to factorize columns k:n of A
328*
329 CALL ssytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo )
330 kb = n - k + 1
331 END IF
332*
333* Set INFO on the first occurrence of a zero pivot
334*
335 IF( info.EQ.0 .AND. iinfo.GT.0 )
336 $ info = iinfo + k - 1
337*
338* Adjust IPIV
339*
340 DO 30 j = k, k + kb - 1
341 IF( ipiv( j ).GT.0 ) THEN
342 ipiv( j ) = ipiv( j ) + k - 1
343 ELSE
344 ipiv( j ) = ipiv( j ) - k + 1
345 END IF
346 30 CONTINUE
347*
348* Increase K and return to the start of the main loop
349*
350 k = k + kb
351 GO TO 20
352*
353 END IF
354*
355 40 CONTINUE
356 work( 1 ) = sroundup_lwork(lwkopt)
357 RETURN
358*
359* End of SSYTRF
360*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssytf2(uplo, n, a, lda, ipiv, info)
SSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition ssytf2.f:195
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine slasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
SLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diagonal p...
Definition slasyf.f:176
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: