LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ schkqr()

subroutine schkqr ( logical, dimension( * )  dotype,
integer  nm,
integer, dimension( * )  mval,
integer  nn,
integer, dimension( * )  nval,
integer  nnb,
integer, dimension( * )  nbval,
integer, dimension( * )  nxval,
integer  nrhs,
real  thresh,
logical  tsterr,
integer  nmax,
real, dimension( * )  a,
real, dimension( * )  af,
real, dimension( * )  aq,
real, dimension( * )  ar,
real, dimension( * )  ac,
real, dimension( * )  b,
real, dimension( * )  x,
real, dimension( * )  xact,
real, dimension( * )  tau,
real, dimension( * )  work,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  nout 
)

SCHKQR

Purpose:
 SCHKQR tests SGEQRF, SORGQR and SORMQR.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is REAL array, dimension (NMAX*NMAX)
[out]AF
          AF is REAL array, dimension (NMAX*NMAX)
[out]AQ
          AQ is REAL array, dimension (NMAX*NMAX)
[out]AR
          AR is REAL array, dimension (NMAX*NMAX)
[out]AC
          AC is REAL array, dimension (NMAX*NMAX)
[out]B
          B is REAL array, dimension (NMAX*NRHS)
[out]X
          X is REAL array, dimension (NMAX*NRHS)
[out]XACT
          XACT is REAL array, dimension (NMAX*NRHS)
[out]TAU
          TAU is REAL array, dimension (NMAX)
[out]WORK
          WORK is REAL array, dimension (NMAX*NMAX)
[out]RWORK
          RWORK is REAL array, dimension (NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 198 of file schkqr.f.

201*
202* -- LAPACK test routine --
203* -- LAPACK is a software package provided by Univ. of Tennessee, --
204* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
205*
206* .. Scalar Arguments ..
207 LOGICAL TSTERR
208 INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
209 REAL THRESH
210* ..
211* .. Array Arguments ..
212 LOGICAL DOTYPE( * )
213 INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
214 $ NXVAL( * )
215 REAL A( * ), AC( * ), AF( * ), AQ( * ), AR( * ),
216 $ B( * ), RWORK( * ), TAU( * ), WORK( * ),
217 $ X( * ), XACT( * )
218* ..
219*
220* =====================================================================
221*
222* .. Parameters ..
223 INTEGER NTESTS
224 parameter( ntests = 9 )
225 INTEGER NTYPES
226 parameter( ntypes = 8 )
227 REAL ZERO
228 parameter( zero = 0.0e0 )
229* ..
230* .. Local Scalars ..
231 CHARACTER DIST, TYPE
232 CHARACTER*3 PATH
233 INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA,
234 $ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK,
235 $ NRUN, NT, NX
236 REAL ANORM, CNDNUM
237* ..
238* .. Local Arrays ..
239 INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 )
240 REAL RESULT( NTESTS )
241* ..
242* .. External Functions ..
243 LOGICAL SGENND
244 EXTERNAL sgennd
245* ..
246* .. External Subroutines ..
247 EXTERNAL alaerh, alahd, alasum, serrqr, sgels, sget02,
250* ..
251* .. Intrinsic Functions ..
252 INTRINSIC max, min
253* ..
254* .. Scalars in Common ..
255 LOGICAL LERR, OK
256 CHARACTER*32 SRNAMT
257 INTEGER INFOT, NUNIT
258* ..
259* .. Common blocks ..
260 COMMON / infoc / infot, nunit, ok, lerr
261 COMMON / srnamc / srnamt
262* ..
263* .. Data statements ..
264 DATA iseedy / 1988, 1989, 1990, 1991 /
265* ..
266* .. Executable Statements ..
267*
268* Initialize constants and the random number seed.
269*
270 path( 1: 1 ) = 'Single precision'
271 path( 2: 3 ) = 'QR'
272 nrun = 0
273 nfail = 0
274 nerrs = 0
275 DO 10 i = 1, 4
276 iseed( i ) = iseedy( i )
277 10 CONTINUE
278*
279* Test the error exits
280*
281 IF( tsterr )
282 $ CALL serrqr( path, nout )
283 infot = 0
284 CALL xlaenv( 2, 2 )
285*
286 lda = nmax
287 lwork = nmax*max( nmax, nrhs )
288*
289* Do for each value of M in MVAL.
290*
291 DO 70 im = 1, nm
292 m = mval( im )
293*
294* Do for each value of N in NVAL.
295*
296 DO 60 in = 1, nn
297 n = nval( in )
298 minmn = min( m, n )
299 DO 50 imat = 1, ntypes
300*
301* Do the tests only if DOTYPE( IMAT ) is true.
302*
303 IF( .NOT.dotype( imat ) )
304 $ GO TO 50
305*
306* Set up parameters with SLATB4 and generate a test matrix
307* with SLATMS.
308*
309 CALL slatb4( path, imat, m, n, TYPE, KL, KU, ANORM, MODE,
310 $ CNDNUM, DIST )
311*
312 srnamt = 'SLATMS'
313 CALL slatms( m, n, dist, iseed, TYPE, RWORK, MODE,
314 $ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA,
315 $ WORK, INFO )
316*
317* Check error code from SLATMS.
318*
319 IF( info.NE.0 ) THEN
320 CALL alaerh( path, 'SLATMS', info, 0, ' ', m, n, -1,
321 $ -1, -1, imat, nfail, nerrs, nout )
322 GO TO 50
323 END IF
324*
325* Set some values for K: the first value must be MINMN,
326* corresponding to the call of SQRT01; other values are
327* used in the calls of SQRT02, and must not exceed MINMN.
328*
329 kval( 1 ) = minmn
330 kval( 2 ) = 0
331 kval( 3 ) = 1
332 kval( 4 ) = minmn / 2
333 IF( minmn.EQ.0 ) THEN
334 nk = 1
335 ELSE IF( minmn.EQ.1 ) THEN
336 nk = 2
337 ELSE IF( minmn.LE.3 ) THEN
338 nk = 3
339 ELSE
340 nk = 4
341 END IF
342*
343* Do for each value of K in KVAL
344*
345 DO 40 ik = 1, nk
346 k = kval( ik )
347*
348* Do for each pair of values (NB,NX) in NBVAL and NXVAL.
349*
350 DO 30 inb = 1, nnb
351 nb = nbval( inb )
352 CALL xlaenv( 1, nb )
353 nx = nxval( inb )
354 CALL xlaenv( 3, nx )
355 DO i = 1, ntests
356 result( i ) = zero
357 END DO
358 nt = 2
359 IF( ik.EQ.1 ) THEN
360*
361* Test SGEQRF
362*
363 CALL sqrt01( m, n, a, af, aq, ar, lda, tau,
364 $ work, lwork, rwork, result( 1 ) )
365*
366* Test SGEQRFP
367*
368 CALL sqrt01p( m, n, a, af, aq, ar, lda, tau,
369 $ work, lwork, rwork, result( 8 ) )
370
371 IF( .NOT. sgennd( m, n, af, lda ) )
372 $ result( 9 ) = 2*thresh
373 nt = nt + 1
374 ELSE IF( m.GE.n ) THEN
375*
376* Test SORGQR, using factorization
377* returned by SQRT01
378*
379 CALL sqrt02( m, n, k, a, af, aq, ar, lda, tau,
380 $ work, lwork, rwork, result( 1 ) )
381 END IF
382 IF( m.GE.k ) THEN
383*
384* Test SORMQR, using factorization returned
385* by SQRT01
386*
387 CALL sqrt03( m, n, k, af, ac, ar, aq, lda, tau,
388 $ work, lwork, rwork, result( 3 ) )
389 nt = nt + 4
390*
391* If M>=N and K=N, call SGELS to solve a system
392* with NRHS right hand sides and compute the
393* residual.
394*
395 IF( k.EQ.n .AND. inb.EQ.1 ) THEN
396*
397* Generate a solution and set the right
398* hand side.
399*
400 srnamt = 'SLARHS'
401 CALL slarhs( path, 'New', 'Full',
402 $ 'No transpose', m, n, 0, 0,
403 $ nrhs, a, lda, xact, lda, b, lda,
404 $ iseed, info )
405*
406 CALL slacpy( 'Full', m, nrhs, b, lda, x,
407 $ lda )
408*
409* Reset AF to the original matrix. SGELS
410* factors the matrix before solving the system.
411*
412 CALL slacpy( 'Full', m, n, a, lda, af, lda )
413*
414 srnamt = 'SGELS'
415 CALL sgels( 'No transpose', m, n, nrhs, af,
416 $ lda, x, lda, work, lwork, info )
417*
418* Check error code from SGELS.
419*
420 IF( info.NE.0 )
421 $ CALL alaerh( path, 'SGELS', info, 0, 'N',
422 $ m, n, nrhs, -1, nb, imat,
423 $ nfail, nerrs, nout )
424*
425 CALL sget02( 'No transpose', m, n, nrhs, a,
426 $ lda, x, lda, b, lda, rwork,
427 $ result( 7 ) )
428 nt = nt + 1
429 END IF
430 END IF
431*
432* Print information about the tests that did not
433* pass the threshold.
434*
435 DO 20 i = 1, ntests
436 IF( result( i ).GE.thresh ) THEN
437 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
438 $ CALL alahd( nout, path )
439 WRITE( nout, fmt = 9999 )m, n, k, nb, nx,
440 $ imat, i, result( i )
441 nfail = nfail + 1
442 END IF
443 20 CONTINUE
444 nrun = nrun + ntests
445 30 CONTINUE
446 40 CONTINUE
447 50 CONTINUE
448 60 CONTINUE
449 70 CONTINUE
450*
451* Print a summary of the results.
452*
453 CALL alasum( path, nout, nfail, nrun, nerrs )
454*
455 9999 FORMAT( ' M=', i5, ', N=', i5, ', K=', i5, ', NB=', i4, ', NX=',
456 $ i5, ', type ', i2, ', test(', i2, ')=', g12.5 )
457 RETURN
458*
459* End of SCHKQR
460*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine sget02(trans, m, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
SGET02
Definition sget02.f:135
subroutine slarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
SLARHS
Definition slarhs.f:205
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine sgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
SGELS solves overdetermined or underdetermined systems for GE matrices
Definition sgels.f:183
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
subroutine serrqr(path, nunit)
SERRQR
Definition serrqr.f:55
logical function sgennd(m, n, a, lda)
SGENND
Definition sgennd.f:68
subroutine slatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
SLATB4
Definition slatb4.f:120
subroutine slatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
SLATMS
Definition slatms.f:321
subroutine sqrt01(m, n, a, af, q, r, lda, tau, work, lwork, rwork, result)
SQRT01
Definition sqrt01.f:126
subroutine sqrt01p(m, n, a, af, q, r, lda, tau, work, lwork, rwork, result)
SQRT01P
Definition sqrt01p.f:126
subroutine sqrt02(m, n, k, a, af, q, r, lda, tau, work, lwork, rwork, result)
SQRT02
Definition sqrt02.f:135
subroutine sqrt03(m, n, k, af, c, cc, q, lda, tau, work, lwork, rwork, result)
SQRT03
Definition sqrt03.f:136
Here is the call graph for this function:
Here is the caller graph for this function: