LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sgels.f
Go to the documentation of this file.
1*> \brief <b> SGELS solves overdetermined or underdetermined systems for GE matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SGELS + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgels.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgels.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgels.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
22* INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER TRANS
26* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
27* ..
28* .. Array Arguments ..
29* REAL A( LDA, * ), B( LDB, * ), WORK( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> SGELS solves overdetermined or underdetermined real linear systems
39*> involving an M-by-N matrix A, or its transpose, using a QR or LQ
40*> factorization of A. It is assumed that A has full rank.
41*>
42*> The following options are provided:
43*>
44*> 1. If TRANS = 'N' and m >= n: find the least squares solution of
45*> an overdetermined system, i.e., solve the least squares problem
46*> minimize || B - A*X ||.
47*>
48*> 2. If TRANS = 'N' and m < n: find the minimum norm solution of
49*> an underdetermined system A * X = B.
50*>
51*> 3. If TRANS = 'T' and m >= n: find the minimum norm solution of
52*> an underdetermined system A**T * X = B.
53*>
54*> 4. If TRANS = 'T' and m < n: find the least squares solution of
55*> an overdetermined system, i.e., solve the least squares problem
56*> minimize || B - A**T * X ||.
57*>
58*> Several right hand side vectors b and solution vectors x can be
59*> handled in a single call; they are stored as the columns of the
60*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
61*> matrix X.
62*> \endverbatim
63*
64* Arguments:
65* ==========
66*
67*> \param[in] TRANS
68*> \verbatim
69*> TRANS is CHARACTER*1
70*> = 'N': the linear system involves A;
71*> = 'T': the linear system involves A**T.
72*> \endverbatim
73*>
74*> \param[in] M
75*> \verbatim
76*> M is INTEGER
77*> The number of rows of the matrix A. M >= 0.
78*> \endverbatim
79*>
80*> \param[in] N
81*> \verbatim
82*> N is INTEGER
83*> The number of columns of the matrix A. N >= 0.
84*> \endverbatim
85*>
86*> \param[in] NRHS
87*> \verbatim
88*> NRHS is INTEGER
89*> The number of right hand sides, i.e., the number of
90*> columns of the matrices B and X. NRHS >=0.
91*> \endverbatim
92*>
93*> \param[in,out] A
94*> \verbatim
95*> A is REAL array, dimension (LDA,N)
96*> On entry, the M-by-N matrix A.
97*> On exit,
98*> if M >= N, A is overwritten by details of its QR
99*> factorization as returned by SGEQRF;
100*> if M < N, A is overwritten by details of its LQ
101*> factorization as returned by SGELQF.
102*> \endverbatim
103*>
104*> \param[in] LDA
105*> \verbatim
106*> LDA is INTEGER
107*> The leading dimension of the array A. LDA >= max(1,M).
108*> \endverbatim
109*>
110*> \param[in,out] B
111*> \verbatim
112*> B is REAL array, dimension (LDB,NRHS)
113*> On entry, the matrix B of right hand side vectors, stored
114*> columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
115*> if TRANS = 'T'.
116*> On exit, if INFO = 0, B is overwritten by the solution
117*> vectors, stored columnwise:
118*> if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
119*> squares solution vectors; the residual sum of squares for the
120*> solution in each column is given by the sum of squares of
121*> elements N+1 to M in that column;
122*> if TRANS = 'N' and m < n, rows 1 to N of B contain the
123*> minimum norm solution vectors;
124*> if TRANS = 'T' and m >= n, rows 1 to M of B contain the
125*> minimum norm solution vectors;
126*> if TRANS = 'T' and m < n, rows 1 to M of B contain the
127*> least squares solution vectors; the residual sum of squares
128*> for the solution in each column is given by the sum of
129*> squares of elements M+1 to N in that column.
130*> \endverbatim
131*>
132*> \param[in] LDB
133*> \verbatim
134*> LDB is INTEGER
135*> The leading dimension of the array B. LDB >= MAX(1,M,N).
136*> \endverbatim
137*>
138*> \param[out] WORK
139*> \verbatim
140*> WORK is REAL array, dimension (MAX(1,LWORK))
141*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
142*> \endverbatim
143*>
144*> \param[in] LWORK
145*> \verbatim
146*> LWORK is INTEGER
147*> The dimension of the array WORK.
148*> LWORK >= max( 1, MN + max( MN, NRHS ) ).
149*> For optimal performance,
150*> LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
151*> where MN = min(M,N) and NB is the optimum block size.
152*>
153*> If LWORK = -1, then a workspace query is assumed; the routine
154*> only calculates the optimal size of the WORK array, returns
155*> this value as the first entry of the WORK array, and no error
156*> message related to LWORK is issued by XERBLA.
157*> \endverbatim
158*>
159*> \param[out] INFO
160*> \verbatim
161*> INFO is INTEGER
162*> = 0: successful exit
163*> < 0: if INFO = -i, the i-th argument had an illegal value
164*> > 0: if INFO = i, the i-th diagonal element of the
165*> triangular factor of A is zero, so that A does not have
166*> full rank; the least squares solution could not be
167*> computed.
168*> \endverbatim
169*
170* Authors:
171* ========
172*
173*> \author Univ. of Tennessee
174*> \author Univ. of California Berkeley
175*> \author Univ. of Colorado Denver
176*> \author NAG Ltd.
177*
178*> \ingroup gels
179*
180* =====================================================================
181 SUBROUTINE sgels( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
182 $ INFO )
183*
184* -- LAPACK driver routine --
185* -- LAPACK is a software package provided by Univ. of Tennessee, --
186* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
187*
188* .. Scalar Arguments ..
189 CHARACTER TRANS
190 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS
191* ..
192* .. Array Arguments ..
193 REAL A( LDA, * ), B( LDB, * ), WORK( * )
194* ..
195*
196* =====================================================================
197*
198* .. Parameters ..
199 REAL ZERO, ONE
200 parameter( zero = 0.0e0, one = 1.0e0 )
201* ..
202* .. Local Scalars ..
203 LOGICAL LQUERY, TPSD
204 INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
205 REAL ANRM, BIGNUM, BNRM, SMLNUM
206* ..
207* .. Local Arrays ..
208 REAL RWORK( 1 )
209* ..
210* .. External Functions ..
211 LOGICAL LSAME
212 INTEGER ILAENV
213 REAL SLAMCH, SLANGE, SROUNDUP_LWORK
214 EXTERNAL lsame, ilaenv, slamch, slange, sroundup_lwork
215* ..
216* .. External Subroutines ..
217 EXTERNAL sgelqf, sgeqrf, slascl, slaset, sormlq,
219* ..
220* .. Intrinsic Functions ..
221 INTRINSIC max, min
222* ..
223* .. Executable Statements ..
224*
225* Test the input arguments.
226*
227 info = 0
228 mn = min( m, n )
229 lquery = ( lwork.EQ.-1 )
230 IF( .NOT.( lsame( trans, 'N' ) .OR. lsame( trans, 'T' ) ) ) THEN
231 info = -1
232 ELSE IF( m.LT.0 ) THEN
233 info = -2
234 ELSE IF( n.LT.0 ) THEN
235 info = -3
236 ELSE IF( nrhs.LT.0 ) THEN
237 info = -4
238 ELSE IF( lda.LT.max( 1, m ) ) THEN
239 info = -6
240 ELSE IF( ldb.LT.max( 1, m, n ) ) THEN
241 info = -8
242 ELSE IF( lwork.LT.max( 1, mn + max( mn, nrhs ) ) .AND.
243 $ .NOT.lquery ) THEN
244 info = -10
245 END IF
246*
247* Figure out optimal block size
248*
249 IF( info.EQ.0 .OR. info.EQ.-10 ) THEN
250*
251 tpsd = .true.
252 IF( lsame( trans, 'N' ) )
253 $ tpsd = .false.
254*
255 IF( m.GE.n ) THEN
256 nb = ilaenv( 1, 'SGEQRF', ' ', m, n, -1, -1 )
257 IF( tpsd ) THEN
258 nb = max( nb, ilaenv( 1, 'SORMQR', 'LN', m, nrhs, n,
259 $ -1 ) )
260 ELSE
261 nb = max( nb, ilaenv( 1, 'SORMQR', 'LT', m, nrhs, n,
262 $ -1 ) )
263 END IF
264 ELSE
265 nb = ilaenv( 1, 'SGELQF', ' ', m, n, -1, -1 )
266 IF( tpsd ) THEN
267 nb = max( nb, ilaenv( 1, 'SORMLQ', 'LT', n, nrhs, m,
268 $ -1 ) )
269 ELSE
270 nb = max( nb, ilaenv( 1, 'SORMLQ', 'LN', n, nrhs, m,
271 $ -1 ) )
272 END IF
273 END IF
274*
275 wsize = max( 1, mn + max( mn, nrhs )*nb )
276 work( 1 ) = sroundup_lwork( wsize )
277*
278 END IF
279*
280 IF( info.NE.0 ) THEN
281 CALL xerbla( 'SGELS ', -info )
282 RETURN
283 ELSE IF( lquery ) THEN
284 RETURN
285 END IF
286*
287* Quick return if possible
288*
289 IF( min( m, n, nrhs ).EQ.0 ) THEN
290 CALL slaset( 'Full', max( m, n ), nrhs, zero, zero, b, ldb )
291 RETURN
292 END IF
293*
294* Get machine parameters
295*
296 smlnum = slamch( 'S' ) / slamch( 'P' )
297 bignum = one / smlnum
298*
299* Scale A, B if max element outside range [SMLNUM,BIGNUM]
300*
301 anrm = slange( 'M', m, n, a, lda, rwork )
302 iascl = 0
303 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
304*
305* Scale matrix norm up to SMLNUM
306*
307 CALL slascl( 'G', 0, 0, anrm, smlnum, m, n, a, lda, info )
308 iascl = 1
309 ELSE IF( anrm.GT.bignum ) THEN
310*
311* Scale matrix norm down to BIGNUM
312*
313 CALL slascl( 'G', 0, 0, anrm, bignum, m, n, a, lda, info )
314 iascl = 2
315 ELSE IF( anrm.EQ.zero ) THEN
316*
317* Matrix all zero. Return zero solution.
318*
319 CALL slaset( 'F', max( m, n ), nrhs, zero, zero, b, ldb )
320 GO TO 50
321 END IF
322*
323 brow = m
324 IF( tpsd )
325 $ brow = n
326 bnrm = slange( 'M', brow, nrhs, b, ldb, rwork )
327 ibscl = 0
328 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
329*
330* Scale matrix norm up to SMLNUM
331*
332 CALL slascl( 'G', 0, 0, bnrm, smlnum, brow, nrhs, b, ldb,
333 $ info )
334 ibscl = 1
335 ELSE IF( bnrm.GT.bignum ) THEN
336*
337* Scale matrix norm down to BIGNUM
338*
339 CALL slascl( 'G', 0, 0, bnrm, bignum, brow, nrhs, b, ldb,
340 $ info )
341 ibscl = 2
342 END IF
343*
344 IF( m.GE.n ) THEN
345*
346* compute QR factorization of A
347*
348 CALL sgeqrf( m, n, a, lda, work( 1 ), work( mn+1 ), lwork-mn,
349 $ info )
350*
351* workspace at least N, optimally N*NB
352*
353 IF( .NOT.tpsd ) THEN
354*
355* Least-Squares Problem min || A * X - B ||
356*
357* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
358*
359 CALL sormqr( 'Left', 'Transpose', m, nrhs, n, a, lda,
360 $ work( 1 ), b, ldb, work( mn+1 ), lwork-mn,
361 $ info )
362*
363* workspace at least NRHS, optimally NRHS*NB
364*
365* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
366*
367 CALL strtrs( 'Upper', 'No transpose', 'Non-unit', n, nrhs,
368 $ a, lda, b, ldb, info )
369*
370 IF( info.GT.0 ) THEN
371 RETURN
372 END IF
373*
374 scllen = n
375*
376 ELSE
377*
378* Underdetermined system of equations A**T * X = B
379*
380* B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
381*
382 CALL strtrs( 'Upper', 'Transpose', 'Non-unit', n, nrhs,
383 $ a, lda, b, ldb, info )
384*
385 IF( info.GT.0 ) THEN
386 RETURN
387 END IF
388*
389* B(N+1:M,1:NRHS) = ZERO
390*
391 DO 20 j = 1, nrhs
392 DO 10 i = n + 1, m
393 b( i, j ) = zero
394 10 CONTINUE
395 20 CONTINUE
396*
397* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
398*
399 CALL sormqr( 'Left', 'No transpose', m, nrhs, n, a, lda,
400 $ work( 1 ), b, ldb, work( mn+1 ), lwork-mn,
401 $ info )
402*
403* workspace at least NRHS, optimally NRHS*NB
404*
405 scllen = m
406*
407 END IF
408*
409 ELSE
410*
411* Compute LQ factorization of A
412*
413 CALL sgelqf( m, n, a, lda, work( 1 ), work( mn+1 ), lwork-mn,
414 $ info )
415*
416* workspace at least M, optimally M*NB.
417*
418 IF( .NOT.tpsd ) THEN
419*
420* underdetermined system of equations A * X = B
421*
422* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
423*
424 CALL strtrs( 'Lower', 'No transpose', 'Non-unit', m, nrhs,
425 $ a, lda, b, ldb, info )
426*
427 IF( info.GT.0 ) THEN
428 RETURN
429 END IF
430*
431* B(M+1:N,1:NRHS) = 0
432*
433 DO 40 j = 1, nrhs
434 DO 30 i = m + 1, n
435 b( i, j ) = zero
436 30 CONTINUE
437 40 CONTINUE
438*
439* B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
440*
441 CALL sormlq( 'Left', 'Transpose', n, nrhs, m, a, lda,
442 $ work( 1 ), b, ldb, work( mn+1 ), lwork-mn,
443 $ info )
444*
445* workspace at least NRHS, optimally NRHS*NB
446*
447 scllen = n
448*
449 ELSE
450*
451* overdetermined system min || A**T * X - B ||
452*
453* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
454*
455 CALL sormlq( 'Left', 'No transpose', n, nrhs, m, a, lda,
456 $ work( 1 ), b, ldb, work( mn+1 ), lwork-mn,
457 $ info )
458*
459* workspace at least NRHS, optimally NRHS*NB
460*
461* B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
462*
463 CALL strtrs( 'Lower', 'Transpose', 'Non-unit', m, nrhs,
464 $ a, lda, b, ldb, info )
465*
466 IF( info.GT.0 ) THEN
467 RETURN
468 END IF
469*
470 scllen = m
471*
472 END IF
473*
474 END IF
475*
476* Undo scaling
477*
478 IF( iascl.EQ.1 ) THEN
479 CALL slascl( 'G', 0, 0, anrm, smlnum, scllen, nrhs, b, ldb,
480 $ info )
481 ELSE IF( iascl.EQ.2 ) THEN
482 CALL slascl( 'G', 0, 0, anrm, bignum, scllen, nrhs, b, ldb,
483 $ info )
484 END IF
485 IF( ibscl.EQ.1 ) THEN
486 CALL slascl( 'G', 0, 0, smlnum, bnrm, scllen, nrhs, b, ldb,
487 $ info )
488 ELSE IF( ibscl.EQ.2 ) THEN
489 CALL slascl( 'G', 0, 0, bignum, bnrm, scllen, nrhs, b, ldb,
490 $ info )
491 END IF
492*
493 50 CONTINUE
494 work( 1 ) = sroundup_lwork( wsize )
495*
496 RETURN
497*
498* End of SGELS
499*
500 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgelqf(m, n, a, lda, tau, work, lwork, info)
SGELQF
Definition sgelqf.f:143
subroutine sgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
SGELS solves overdetermined or underdetermined systems for GE matrices
Definition sgels.f:183
subroutine sgeqrf(m, n, a, lda, tau, work, lwork, info)
SGEQRF
Definition sgeqrf.f:146
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:143
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
subroutine strtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)
STRTRS
Definition strtrs.f:140
subroutine sormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMLQ
Definition sormlq.f:168
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:168