LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ sqrt03()

subroutine sqrt03 ( integer m,
integer n,
integer k,
real, dimension( lda, * ) af,
real, dimension( lda, * ) c,
real, dimension( lda, * ) cc,
real, dimension( lda, * ) q,
integer lda,
real, dimension( * ) tau,
real, dimension( lwork ) work,
integer lwork,
real, dimension( * ) rwork,
real, dimension( * ) result )

SQRT03

Purpose:
!> !> SQRT03 tests SORMQR, which computes Q*C, Q'*C, C*Q or C*Q'. !> !> SQRT03 compares the results of a call to SORMQR with the results of !> forming Q explicitly by a call to SORGQR and then performing matrix !> multiplication by a call to SGEMM. !>
Parameters
[in]M
!> M is INTEGER !> The order of the orthogonal matrix Q. M >= 0. !>
[in]N
!> N is INTEGER !> The number of rows or columns of the matrix C; C is m-by-n if !> Q is applied from the left, or n-by-m if Q is applied from !> the right. N >= 0. !>
[in]K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> orthogonal matrix Q. M >= K >= 0. !>
[in]AF
!> AF is REAL array, dimension (LDA,N) !> Details of the QR factorization of an m-by-n matrix, as !> returned by SGEQRF. See SGEQRF for further details. !>
[out]C
!> C is REAL array, dimension (LDA,N) !>
[out]CC
!> CC is REAL array, dimension (LDA,N) !>
[out]Q
!> Q is REAL array, dimension (LDA,M) !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the arrays AF, C, CC, and Q. !>
[in]TAU
!> TAU is REAL array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors corresponding !> to the QR factorization in AF. !>
[out]WORK
!> WORK is REAL array, dimension (LWORK) !>
[in]LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK must be at least M, and should be !> M*NB, where NB is the blocksize for this environment. !>
[out]RWORK
!> RWORK is REAL array, dimension (M) !>
[out]RESULT
!> RESULT is REAL array, dimension (4) !> The test ratios compare two techniques for multiplying a !> random matrix C by an m-by-m orthogonal matrix Q. !> RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) !> RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) !> RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) !> RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 134 of file sqrt03.f.

136*
137* -- LAPACK test routine --
138* -- LAPACK is a software package provided by Univ. of Tennessee, --
139* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140*
141* .. Scalar Arguments ..
142 INTEGER K, LDA, LWORK, M, N
143* ..
144* .. Array Arguments ..
145 REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
146 $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
147 $ WORK( LWORK )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 REAL ONE
154 parameter( one = 1.0e0 )
155 REAL ROGUE
156 parameter( rogue = -1.0e+10 )
157* ..
158* .. Local Scalars ..
159 CHARACTER SIDE, TRANS
160 INTEGER INFO, ISIDE, ITRANS, J, MC, NC
161 REAL CNORM, EPS, RESID
162* ..
163* .. External Functions ..
164 LOGICAL LSAME
165 REAL SLAMCH, SLANGE
166 EXTERNAL lsame, slamch, slange
167* ..
168* .. External Subroutines ..
169 EXTERNAL sgemm, slacpy, slarnv, slaset, sorgqr, sormqr
170* ..
171* .. Local Arrays ..
172 INTEGER ISEED( 4 )
173* ..
174* .. Intrinsic Functions ..
175 INTRINSIC max, real
176* ..
177* .. Scalars in Common ..
178 CHARACTER*32 SRNAMT
179* ..
180* .. Common blocks ..
181 COMMON / srnamc / srnamt
182* ..
183* .. Data statements ..
184 DATA iseed / 1988, 1989, 1990, 1991 /
185* ..
186* .. Executable Statements ..
187*
188 eps = slamch( 'Epsilon' )
189*
190* Copy the first k columns of the factorization to the array Q
191*
192 CALL slaset( 'Full', m, m, rogue, rogue, q, lda )
193 CALL slacpy( 'Lower', m-1, k, af( 2, 1 ), lda, q( 2, 1 ), lda )
194*
195* Generate the m-by-m matrix Q
196*
197 srnamt = 'SORGQR'
198 CALL sorgqr( m, m, k, q, lda, tau, work, lwork, info )
199*
200 DO 30 iside = 1, 2
201 IF( iside.EQ.1 ) THEN
202 side = 'L'
203 mc = m
204 nc = n
205 ELSE
206 side = 'R'
207 mc = n
208 nc = m
209 END IF
210*
211* Generate MC by NC matrix C
212*
213 DO 10 j = 1, nc
214 CALL slarnv( 2, iseed, mc, c( 1, j ) )
215 10 CONTINUE
216 cnorm = slange( '1', mc, nc, c, lda, rwork )
217 IF( cnorm.EQ.0.0 )
218 $ cnorm = one
219*
220 DO 20 itrans = 1, 2
221 IF( itrans.EQ.1 ) THEN
222 trans = 'N'
223 ELSE
224 trans = 'T'
225 END IF
226*
227* Copy C
228*
229 CALL slacpy( 'Full', mc, nc, c, lda, cc, lda )
230*
231* Apply Q or Q' to C
232*
233 srnamt = 'SORMQR'
234 CALL sormqr( side, trans, mc, nc, k, af, lda, tau, cc, lda,
235 $ work, lwork, info )
236*
237* Form explicit product and subtract
238*
239 IF( lsame( side, 'L' ) ) THEN
240 CALL sgemm( trans, 'No transpose', mc, nc, mc, -one, q,
241 $ lda, c, lda, one, cc, lda )
242 ELSE
243 CALL sgemm( 'No transpose', trans, mc, nc, nc, -one, c,
244 $ lda, q, lda, one, cc, lda )
245 END IF
246*
247* Compute error in the difference
248*
249 resid = slange( '1', mc, nc, cc, lda, rwork )
250 result( ( iside-1 )*2+itrans ) = resid /
251 $ ( real( max( 1, m ) )*cnorm*eps )
252*
253 20 CONTINUE
254 30 CONTINUE
255*
256 RETURN
257*
258* End of SQRT03
259*
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slange(norm, m, n, a, lda, work)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slange.f:112
subroutine slarnv(idist, iseed, n, x)
SLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition slarnv.f:95
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine sorgqr(m, n, k, a, lda, tau, work, lwork, info)
SORGQR
Definition sorgqr.f:126
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:166
Here is the call graph for this function:
Here is the caller graph for this function: