LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sorgqr.f
Go to the documentation of this file.
1*> \brief \b SORGQR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SORGQR + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgqr.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgqr.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgqr.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, K, LDA, LWORK, M, N
23* ..
24* .. Array Arguments ..
25* REAL A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> SORGQR generates an M-by-N real matrix Q with orthonormal columns,
35*> which is defined as the first N columns of a product of K elementary
36*> reflectors of order M
37*>
38*> Q = H(1) H(2) . . . H(k)
39*>
40*> as returned by SGEQRF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix Q. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix Q. M >= N >= 0.
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> The number of elementary reflectors whose product defines the
62*> matrix Q. N >= K >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is REAL array, dimension (LDA,N)
68*> On entry, the i-th column must contain the vector which
69*> defines the elementary reflector H(i), for i = 1,2,...,k, as
70*> returned by SGEQRF in the first k columns of its array
71*> argument A.
72*> On exit, the M-by-N matrix Q.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The first dimension of the array A. LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[in] TAU
82*> \verbatim
83*> TAU is REAL array, dimension (K)
84*> TAU(i) must contain the scalar factor of the elementary
85*> reflector H(i), as returned by SGEQRF.
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is REAL array, dimension (MAX(1,LWORK))
91*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
92*> \endverbatim
93*>
94*> \param[in] LWORK
95*> \verbatim
96*> LWORK is INTEGER
97*> The dimension of the array WORK. LWORK >= max(1,N).
98*> For optimum performance LWORK >= N*NB, where NB is the
99*> optimal blocksize.
100*>
101*> If LWORK = -1, then a workspace query is assumed; the routine
102*> only calculates the optimal size of the WORK array, returns
103*> this value as the first entry of the WORK array, and no error
104*> message related to LWORK is issued by XERBLA.
105*> \endverbatim
106*>
107*> \param[out] INFO
108*> \verbatim
109*> INFO is INTEGER
110*> = 0: successful exit
111*> < 0: if INFO = -i, the i-th argument has an illegal value
112*> \endverbatim
113*
114* Authors:
115* ========
116*
117*> \author Univ. of Tennessee
118*> \author Univ. of California Berkeley
119*> \author Univ. of Colorado Denver
120*> \author NAG Ltd.
121*
122*> \ingroup ungqr
123*
124* =====================================================================
125 SUBROUTINE sorgqr( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
126*
127* -- LAPACK computational routine --
128* -- LAPACK is a software package provided by Univ. of Tennessee, --
129* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131* .. Scalar Arguments ..
132 INTEGER INFO, K, LDA, LWORK, M, N
133* ..
134* .. Array Arguments ..
135 REAL A( LDA, * ), TAU( * ), WORK( * )
136* ..
137*
138* =====================================================================
139*
140* .. Parameters ..
141 REAL ZERO
142 parameter( zero = 0.0e+0 )
143* ..
144* .. Local Scalars ..
145 LOGICAL LQUERY
146 INTEGER I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
147 $ LWKOPT, NB, NBMIN, NX
148* ..
149* .. External Subroutines ..
150 EXTERNAL slarfb, slarft, sorg2r, xerbla
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC max, min
154* ..
155* .. External Functions ..
156 INTEGER ILAENV
157 REAL SROUNDUP_LWORK
158 EXTERNAL ilaenv, sroundup_lwork
159* ..
160* .. Executable Statements ..
161*
162* Test the input arguments
163*
164 info = 0
165 nb = ilaenv( 1, 'SORGQR', ' ', m, n, k, -1 )
166 lwkopt = max( 1, n )*nb
167 work( 1 ) = sroundup_lwork(lwkopt)
168 lquery = ( lwork.EQ.-1 )
169 IF( m.LT.0 ) THEN
170 info = -1
171 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
172 info = -2
173 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
174 info = -3
175 ELSE IF( lda.LT.max( 1, m ) ) THEN
176 info = -5
177 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
178 info = -8
179 END IF
180 IF( info.NE.0 ) THEN
181 CALL xerbla( 'SORGQR', -info )
182 RETURN
183 ELSE IF( lquery ) THEN
184 RETURN
185 END IF
186*
187* Quick return if possible
188*
189 IF( n.LE.0 ) THEN
190 work( 1 ) = 1
191 RETURN
192 END IF
193*
194 nbmin = 2
195 nx = 0
196 iws = n
197 IF( nb.GT.1 .AND. nb.LT.k ) THEN
198*
199* Determine when to cross over from blocked to unblocked code.
200*
201 nx = max( 0, ilaenv( 3, 'SORGQR', ' ', m, n, k, -1 ) )
202 IF( nx.LT.k ) THEN
203*
204* Determine if workspace is large enough for blocked code.
205*
206 ldwork = n
207 iws = ldwork*nb
208 IF( lwork.LT.iws ) THEN
209*
210* Not enough workspace to use optimal NB: reduce NB and
211* determine the minimum value of NB.
212*
213 nb = lwork / ldwork
214 nbmin = max( 2, ilaenv( 2, 'SORGQR', ' ', m, n, k,
215 $ -1 ) )
216 END IF
217 END IF
218 END IF
219*
220 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
221*
222* Use blocked code after the last block.
223* The first kk columns are handled by the block method.
224*
225 ki = ( ( k-nx-1 ) / nb )*nb
226 kk = min( k, ki+nb )
227*
228* Set A(1:kk,kk+1:n) to zero.
229*
230 DO 20 j = kk + 1, n
231 DO 10 i = 1, kk
232 a( i, j ) = zero
233 10 CONTINUE
234 20 CONTINUE
235 ELSE
236 kk = 0
237 END IF
238*
239* Use unblocked code for the last or only block.
240*
241 IF( kk.LT.n )
242 $ CALL sorg2r( m-kk, n-kk, k-kk, a( kk+1, kk+1 ), lda,
243 $ tau( kk+1 ), work, iinfo )
244*
245 IF( kk.GT.0 ) THEN
246*
247* Use blocked code
248*
249 DO 50 i = ki + 1, 1, -nb
250 ib = min( nb, k-i+1 )
251 IF( i+ib.LE.n ) THEN
252*
253* Form the triangular factor of the block reflector
254* H = H(i) H(i+1) . . . H(i+ib-1)
255*
256 CALL slarft( 'Forward', 'Columnwise', m-i+1, ib,
257 $ a( i, i ), lda, tau( i ), work, ldwork )
258*
259* Apply H to A(i:m,i+ib:n) from the left
260*
261 CALL slarfb( 'Left', 'No transpose', 'Forward',
262 $ 'Columnwise', m-i+1, n-i-ib+1, ib,
263 $ a( i, i ), lda, work, ldwork, a( i, i+ib ),
264 $ lda, work( ib+1 ), ldwork )
265 END IF
266*
267* Apply H to rows i:m of current block
268*
269 CALL sorg2r( m-i+1, ib, ib, a( i, i ), lda, tau( i ),
270 $ work,
271 $ iinfo )
272*
273* Set rows 1:i-1 of current block to zero
274*
275 DO 40 j = i, i + ib - 1
276 DO 30 l = 1, i - 1
277 a( l, j ) = zero
278 30 CONTINUE
279 40 CONTINUE
280 50 CONTINUE
281 END IF
282*
283 work( 1 ) = sroundup_lwork(iws)
284 RETURN
285*
286* End of SORGQR
287*
288 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine slarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition slarfb.f:195
recursive subroutine slarft(direct, storev, n, k, v, ldv, tau, t, ldt)
SLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition slarft.f:162
subroutine sorg2r(m, n, k, a, lda, tau, work, info)
SORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf ...
Definition sorg2r.f:112
subroutine sorgqr(m, n, k, a, lda, tau, work, lwork, info)
SORGQR
Definition sorgqr.f:126